在 Unity 中开发基于深度学习的低速操纵自主机器人

Riccardo Berta;Luca Lazzaroni;Alessio Capello;Marianna Cossu;Luca Forneris;Alessandro Pighetti;Francesco Bellotti
{"title":"在 Unity 中开发基于深度学习的低速操纵自主机器人","authors":"Riccardo Berta;Luca Lazzaroni;Alessio Capello;Marianna Cossu;Luca Forneris;Alessandro Pighetti;Francesco Bellotti","doi":"10.26599/JICV.2023.9210039","DOIUrl":null,"url":null,"abstract":"This study provides a systematic analysis of the resource-consuming training of deep reinforcement-learning (DRL) agents for simulated low-speed automated driving (AD). In Unity, this study established two case studies: garage parking and navigating an obstacle-dense area. Our analysis involves training a path-planning agent with real-time-only sensor information. This study addresses research questions insufficiently covered in the literature, exploring curriculum learning (CL), agent generalization (knowledge transfer), computation distribution (CPU vs. GPU), and mapless navigation. CL proved necessary for the garage scenario and beneficial for obstacle avoidance. It involved adjustments at different stages, including terminal conditions, environment complexity, and reward function hyperparameters, guided by their evolution in multiple training attempts. Fine-tuning the simulation tick and decision period parameters was crucial for effective training. The abstraction of high-level concepts (e.g., obstacle avoidance) necessitates training the agent in sufficiently complex environments in terms of the number of obstacles. While blogs and forums discuss training machine learning models in Unity, a lack of scientific articles on DRL agents for AD persists. However, since agent development requires considerable training time and difficult procedures, there is a growing need to support such research through scientific means. In addition to our findings, we contribute to the R&D community by providing our environment with open sources.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 3","pages":"229-244"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10695161","citationCount":"0","resultStr":"{\"title\":\"Development of Deep-Learning-Based Autonomous Agents for Low-Speed Maneuvering in Unity\",\"authors\":\"Riccardo Berta;Luca Lazzaroni;Alessio Capello;Marianna Cossu;Luca Forneris;Alessandro Pighetti;Francesco Bellotti\",\"doi\":\"10.26599/JICV.2023.9210039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study provides a systematic analysis of the resource-consuming training of deep reinforcement-learning (DRL) agents for simulated low-speed automated driving (AD). In Unity, this study established two case studies: garage parking and navigating an obstacle-dense area. Our analysis involves training a path-planning agent with real-time-only sensor information. This study addresses research questions insufficiently covered in the literature, exploring curriculum learning (CL), agent generalization (knowledge transfer), computation distribution (CPU vs. GPU), and mapless navigation. CL proved necessary for the garage scenario and beneficial for obstacle avoidance. It involved adjustments at different stages, including terminal conditions, environment complexity, and reward function hyperparameters, guided by their evolution in multiple training attempts. Fine-tuning the simulation tick and decision period parameters was crucial for effective training. The abstraction of high-level concepts (e.g., obstacle avoidance) necessitates training the agent in sufficiently complex environments in terms of the number of obstacles. While blogs and forums discuss training machine learning models in Unity, a lack of scientific articles on DRL agents for AD persists. However, since agent development requires considerable training time and difficult procedures, there is a growing need to support such research through scientific means. In addition to our findings, we contribute to the R&D community by providing our environment with open sources.\",\"PeriodicalId\":100793,\"journal\":{\"name\":\"Journal of Intelligent and Connected Vehicles\",\"volume\":\"7 3\",\"pages\":\"229-244\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10695161\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent and Connected Vehicles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10695161/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent and Connected Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10695161/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究对用于模拟低速自动驾驶(AD)的深度强化学习(DRL)代理的资源消耗训练进行了系统分析。在统一性方面,本研究建立了两个案例研究:车库停车和障碍物密集区域导航。我们的分析涉及利用实时传感器信息训练路径规划代理。本研究解决了文献中未充分涉及的研究问题,探索了课程学习(CL)、代理泛化(知识转移)、计算分配(CPU 与 GPU)和无地图导航。事实证明,课程学习对于车库场景是必要的,而且有利于避障。它涉及不同阶段的调整,包括终端条件、环境复杂性和奖励函数超参数,并以其在多次训练尝试中的演变为指导。微调模拟勾选和决策期参数对有效训练至关重要。要抽象出高级概念(如避开障碍物),就必须在障碍物数量足够复杂的环境中训练代理。虽然博客和论坛讨论了在 Unity 中训练机器学习模型的问题,但仍然缺乏有关反向障碍训练(DRL)代理的科学文章。然而,由于代理开发需要大量的训练时间和困难的程序,因此越来越需要通过科学手段来支持此类研究。除了我们的研究成果,我们还通过提供开源环境为研发社区做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Deep-Learning-Based Autonomous Agents for Low-Speed Maneuvering in Unity
This study provides a systematic analysis of the resource-consuming training of deep reinforcement-learning (DRL) agents for simulated low-speed automated driving (AD). In Unity, this study established two case studies: garage parking and navigating an obstacle-dense area. Our analysis involves training a path-planning agent with real-time-only sensor information. This study addresses research questions insufficiently covered in the literature, exploring curriculum learning (CL), agent generalization (knowledge transfer), computation distribution (CPU vs. GPU), and mapless navigation. CL proved necessary for the garage scenario and beneficial for obstacle avoidance. It involved adjustments at different stages, including terminal conditions, environment complexity, and reward function hyperparameters, guided by their evolution in multiple training attempts. Fine-tuning the simulation tick and decision period parameters was crucial for effective training. The abstraction of high-level concepts (e.g., obstacle avoidance) necessitates training the agent in sufficiently complex environments in terms of the number of obstacles. While blogs and forums discuss training machine learning models in Unity, a lack of scientific articles on DRL agents for AD persists. However, since agent development requires considerable training time and difficult procedures, there is a growing need to support such research through scientific means. In addition to our findings, we contribute to the R&D community by providing our environment with open sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信