Yifu Chen , Lin Wu , Yuan Le , Qian Zhao , Dongfang Zhang , Zhenge Qiu
{"title":"融合 ICESAT-2 数据集和双介质摄影测量模型的高精度测深方法","authors":"Yifu Chen , Lin Wu , Yuan Le , Qian Zhao , Dongfang Zhang , Zhenge Qiu","doi":"10.1016/j.jag.2024.104179","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the accuracy of nearshore bathymetric measurements is essential for understanding coastal environments, resource management, and navigation. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) is the first laser satellite that uses the photon-counting technique. The ICESat-2 is equipped with the Advanced Topographic Laser Altimeter System (ATLAS), which enables higher-accuracy measurements of water, ice, and land elevation on Earth. Two-media photogrammetric bathymetry is a type of nearshore bathymetric technology that uses the geometrical characteristics of light rays. With this technique, the accuracy and reliability mainly depend on eliminating systematic errors and ensuring accurate spatial photogrammetric positioning relative to the object being measured. To improve the bathymetric accuracy of two-media photogrammetry, we integrated high-accuracy elevation data from photon datasets as constraining and control parameters. The improved method effectively eliminated systematic errors in two-media photogrammetry during the established joint-block adjustment model. To improve its accuracy and reliability, we employed multispectral WorldView-2 stereo images in our experiments. Furthermore, the bathymetric results were validated and assessed using in situ and photon data. The experimental results show that the highest accuracy achieved with the bathymetric measurements in our study area was a root mean square error (RMSE) of 0.96 m and a mean absolute error of 0.57 m. Using the proposed fusion method, the bathymetric accuracy (as measured using the RMSE) was 1 m higher than that of two-media photogrammetry without the photon datasets.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104179"},"PeriodicalIF":7.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-accuracy bathymetric method fusing ICESAT-2 datasets and the two-media photogrammetry model\",\"authors\":\"Yifu Chen , Lin Wu , Yuan Le , Qian Zhao , Dongfang Zhang , Zhenge Qiu\",\"doi\":\"10.1016/j.jag.2024.104179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Improving the accuracy of nearshore bathymetric measurements is essential for understanding coastal environments, resource management, and navigation. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) is the first laser satellite that uses the photon-counting technique. The ICESat-2 is equipped with the Advanced Topographic Laser Altimeter System (ATLAS), which enables higher-accuracy measurements of water, ice, and land elevation on Earth. Two-media photogrammetric bathymetry is a type of nearshore bathymetric technology that uses the geometrical characteristics of light rays. With this technique, the accuracy and reliability mainly depend on eliminating systematic errors and ensuring accurate spatial photogrammetric positioning relative to the object being measured. To improve the bathymetric accuracy of two-media photogrammetry, we integrated high-accuracy elevation data from photon datasets as constraining and control parameters. The improved method effectively eliminated systematic errors in two-media photogrammetry during the established joint-block adjustment model. To improve its accuracy and reliability, we employed multispectral WorldView-2 stereo images in our experiments. Furthermore, the bathymetric results were validated and assessed using in situ and photon data. The experimental results show that the highest accuracy achieved with the bathymetric measurements in our study area was a root mean square error (RMSE) of 0.96 m and a mean absolute error of 0.57 m. Using the proposed fusion method, the bathymetric accuracy (as measured using the RMSE) was 1 m higher than that of two-media photogrammetry without the photon datasets.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"134 \",\"pages\":\"Article 104179\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224005351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
High-accuracy bathymetric method fusing ICESAT-2 datasets and the two-media photogrammetry model
Improving the accuracy of nearshore bathymetric measurements is essential for understanding coastal environments, resource management, and navigation. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) is the first laser satellite that uses the photon-counting technique. The ICESat-2 is equipped with the Advanced Topographic Laser Altimeter System (ATLAS), which enables higher-accuracy measurements of water, ice, and land elevation on Earth. Two-media photogrammetric bathymetry is a type of nearshore bathymetric technology that uses the geometrical characteristics of light rays. With this technique, the accuracy and reliability mainly depend on eliminating systematic errors and ensuring accurate spatial photogrammetric positioning relative to the object being measured. To improve the bathymetric accuracy of two-media photogrammetry, we integrated high-accuracy elevation data from photon datasets as constraining and control parameters. The improved method effectively eliminated systematic errors in two-media photogrammetry during the established joint-block adjustment model. To improve its accuracy and reliability, we employed multispectral WorldView-2 stereo images in our experiments. Furthermore, the bathymetric results were validated and assessed using in situ and photon data. The experimental results show that the highest accuracy achieved with the bathymetric measurements in our study area was a root mean square error (RMSE) of 0.96 m and a mean absolute error of 0.57 m. Using the proposed fusion method, the bathymetric accuracy (as measured using the RMSE) was 1 m higher than that of two-media photogrammetry without the photon datasets.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.