评估用于葡文文本作者混淆的深度神经网络架构

Antônio Marcos Rodrigues Franco, Ítalo Cunha, Leonardo B. Oliveira
{"title":"评估用于葡文文本作者混淆的深度神经网络架构","authors":"Antônio Marcos Rodrigues Franco,&nbsp;Ítalo Cunha,&nbsp;Leonardo B. Oliveira","doi":"10.1016/j.nlp.2024.100107","DOIUrl":null,"url":null,"abstract":"<div><div>Preserving authorship anonymity is paramount to protect activists, freedom of expression, and critical journalism. Although there are several mechanisms to provide anonymity on the Internet, one can still identify anonymous authors through their writing style. With the advances in neural network and natural language processing research, the success of a classifier when identifying the author of a text is growing. On the other hand, new approaches that use recurrent neural networks for automatic generation of obfuscated texts have also arisen to fight anonymity adversaries. In this work, we evaluate two approaches that use neural networks to generate obfuscated texts. The first approach uses Generative Adversarial Networks to train an encoder–decoder to transform sentences from an input style into a target style. The second one trains an auto encoder with Gradient Reversal Layer to learn invariant representations. In our experiments, we compared the efficiency of both techniques when removing the stylistic attributes of a text and preserving its original semantics. Our evaluation on real texts clarifies each technique’s trade-offs for Portuguese texts and provides guidance on practical deployment.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"9 ","pages":"Article 100107"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of deep neural network architectures for authorship obfuscation of Portuguese texts\",\"authors\":\"Antônio Marcos Rodrigues Franco,&nbsp;Ítalo Cunha,&nbsp;Leonardo B. Oliveira\",\"doi\":\"10.1016/j.nlp.2024.100107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Preserving authorship anonymity is paramount to protect activists, freedom of expression, and critical journalism. Although there are several mechanisms to provide anonymity on the Internet, one can still identify anonymous authors through their writing style. With the advances in neural network and natural language processing research, the success of a classifier when identifying the author of a text is growing. On the other hand, new approaches that use recurrent neural networks for automatic generation of obfuscated texts have also arisen to fight anonymity adversaries. In this work, we evaluate two approaches that use neural networks to generate obfuscated texts. The first approach uses Generative Adversarial Networks to train an encoder–decoder to transform sentences from an input style into a target style. The second one trains an auto encoder with Gradient Reversal Layer to learn invariant representations. In our experiments, we compared the efficiency of both techniques when removing the stylistic attributes of a text and preserving its original semantics. Our evaluation on real texts clarifies each technique’s trade-offs for Portuguese texts and provides guidance on practical deployment.</div></div>\",\"PeriodicalId\":100944,\"journal\":{\"name\":\"Natural Language Processing Journal\",\"volume\":\"9 \",\"pages\":\"Article 100107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949719124000554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719124000554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

保护作者匿名对于保护活动家、言论自由和批判性新闻报道至关重要。虽然互联网上有多种匿名机制,但人们仍然可以通过匿名作者的写作风格来识别他们。随着神经网络和自然语言处理研究的发展,分类器识别文本作者的成功率越来越高。另一方面,使用递归神经网络自动生成混淆文本的新方法也应运而生,以对抗匿名对手。在这项工作中,我们评估了两种使用神经网络生成混淆文本的方法。第一种方法使用生成对抗网络来训练编码器-解码器,将句子从输入文体转换为目标文体。第二种方法使用梯度反转层(Gradient Reversal Layer)训练自动编码器,以学习不变表征。在实验中,我们比较了这两种技术在去除文本的文体属性并保留其原始语义时的效率。我们对真实文本的评估明确了每种技术在葡萄牙语文本中的权衡,并为实际部署提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of deep neural network architectures for authorship obfuscation of Portuguese texts
Preserving authorship anonymity is paramount to protect activists, freedom of expression, and critical journalism. Although there are several mechanisms to provide anonymity on the Internet, one can still identify anonymous authors through their writing style. With the advances in neural network and natural language processing research, the success of a classifier when identifying the author of a text is growing. On the other hand, new approaches that use recurrent neural networks for automatic generation of obfuscated texts have also arisen to fight anonymity adversaries. In this work, we evaluate two approaches that use neural networks to generate obfuscated texts. The first approach uses Generative Adversarial Networks to train an encoder–decoder to transform sentences from an input style into a target style. The second one trains an auto encoder with Gradient Reversal Layer to learn invariant representations. In our experiments, we compared the efficiency of both techniques when removing the stylistic attributes of a text and preserving its original semantics. Our evaluation on real texts clarifies each technique’s trade-offs for Portuguese texts and provides guidance on practical deployment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信