Haoyang Liao , Fulong Zhao , Hui Bao , Ruibo Lu , Sichao Tan , Puzhen Gao , Ruifeng Tian
{"title":"氦氙冷却反应堆直接布雷顿循环系统的启动和加速瞬态特性初步分析","authors":"Haoyang Liao , Fulong Zhao , Hui Bao , Ruibo Lu , Sichao Tan , Puzhen Gao , Ruifeng Tian","doi":"10.1016/j.pnucene.2024.105462","DOIUrl":null,"url":null,"abstract":"<div><div>Helium-xenon cooled reactor direct Brayton cycle system has excellent application prospects in small nuclear power plants due to its light weight, high compactness and simple structure. The safe startup of reactor system is very important, so the system startup scheme is designed. In addition, reactor system may be affected by external acceleration during operation. Whether reactor system can operate normally and safely after being affected by acceleration and its influence characteristics are not clear. In order to verify the feasibility of the system startup scheme and explore the acceleration influence characteristics, the system analysis program was developed to simulate the system startup transient operating conditions and the transient operating conditions of reactor system under the influence of acceleration. In the research of acceleration influence characteristics, acceleration has different periods, amplitudes, types and directions, and the load state is divided into load change with system output power and constant load. The results show that the designed system startup scheme can start reactor system safely. Reactor system can ignore the influence of acceleration when it has load change with system output power ability. If the load remains constant, reactor system cannot ensure continuous and stable operation after being affected by acceleration, which has the risk of Loss of Flow Accident (LOFA). The relevant research results provide theoretical reference and support for the design of the reactor system startup scheme and the research on the influence characteristics of acceleration on reactor system.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"177 ","pages":"Article 105462"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary analysis of startup and acceleration transient characteristics of helium-xenon cooled reactor direct brayton cycle system\",\"authors\":\"Haoyang Liao , Fulong Zhao , Hui Bao , Ruibo Lu , Sichao Tan , Puzhen Gao , Ruifeng Tian\",\"doi\":\"10.1016/j.pnucene.2024.105462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Helium-xenon cooled reactor direct Brayton cycle system has excellent application prospects in small nuclear power plants due to its light weight, high compactness and simple structure. The safe startup of reactor system is very important, so the system startup scheme is designed. In addition, reactor system may be affected by external acceleration during operation. Whether reactor system can operate normally and safely after being affected by acceleration and its influence characteristics are not clear. In order to verify the feasibility of the system startup scheme and explore the acceleration influence characteristics, the system analysis program was developed to simulate the system startup transient operating conditions and the transient operating conditions of reactor system under the influence of acceleration. In the research of acceleration influence characteristics, acceleration has different periods, amplitudes, types and directions, and the load state is divided into load change with system output power and constant load. The results show that the designed system startup scheme can start reactor system safely. Reactor system can ignore the influence of acceleration when it has load change with system output power ability. If the load remains constant, reactor system cannot ensure continuous and stable operation after being affected by acceleration, which has the risk of Loss of Flow Accident (LOFA). The relevant research results provide theoretical reference and support for the design of the reactor system startup scheme and the research on the influence characteristics of acceleration on reactor system.</div></div>\",\"PeriodicalId\":20617,\"journal\":{\"name\":\"Progress in Nuclear Energy\",\"volume\":\"177 \",\"pages\":\"Article 105462\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0149197024004128\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197024004128","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Preliminary analysis of startup and acceleration transient characteristics of helium-xenon cooled reactor direct brayton cycle system
Helium-xenon cooled reactor direct Brayton cycle system has excellent application prospects in small nuclear power plants due to its light weight, high compactness and simple structure. The safe startup of reactor system is very important, so the system startup scheme is designed. In addition, reactor system may be affected by external acceleration during operation. Whether reactor system can operate normally and safely after being affected by acceleration and its influence characteristics are not clear. In order to verify the feasibility of the system startup scheme and explore the acceleration influence characteristics, the system analysis program was developed to simulate the system startup transient operating conditions and the transient operating conditions of reactor system under the influence of acceleration. In the research of acceleration influence characteristics, acceleration has different periods, amplitudes, types and directions, and the load state is divided into load change with system output power and constant load. The results show that the designed system startup scheme can start reactor system safely. Reactor system can ignore the influence of acceleration when it has load change with system output power ability. If the load remains constant, reactor system cannot ensure continuous and stable operation after being affected by acceleration, which has the risk of Loss of Flow Accident (LOFA). The relevant research results provide theoretical reference and support for the design of the reactor system startup scheme and the research on the influence characteristics of acceleration on reactor system.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.