加权空间中本杰明方程的全局低正则解

IF 1.3 2区 数学 Q1 MATHEMATICS
Sergey Shindin, Nabendra Parumasur
{"title":"加权空间中本杰明方程的全局低正则解","authors":"Sergey Shindin,&nbsp;Nabendra Parumasur","doi":"10.1016/j.na.2024.113674","DOIUrl":null,"url":null,"abstract":"<div><div>We show that the Benjamin equation is globally well-posed for real-valued data in the weighted space <span><span><span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>∩</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>2</mn><mi>r</mi></mrow></msubsup><mo>≔</mo><mrow><mo>{</mo><mrow><mi>u</mi><mspace></mspace><mo>|</mo><mspace></mspace><msub><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><mover><mrow><mi>u</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mi>ξ</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mrow><mo>|</mo><mi>ξ</mi><mo>|</mo></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mrow><mo>(</mo><mi>s</mi><mo>−</mo><mn>2</mn><mi>r</mi><mo>)</mo></mrow></mrow></msup><mi>d</mi><mi>ξ</mi><mo>)</mo></mrow></mrow></msub><mo>&lt;</mo><mi>∞</mi></mrow><mo>}</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mn>0</mn><mo>≤</mo><mi>r</mi></mrow></math></span> and <span><math><mrow><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>+</mo><mi>r</mi><mo>&lt;</mo><mi>s</mi></mrow></math></span>. The proof is based on direct extensions of standard linear and bilinear estimates originated in Kenig et al. (1993), Kenig et al. (1996), Linares (1999), Kozono et al. (2001), Colliander et al. (2003), Li and Wu (2010) to the weighted settings.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"250 ","pages":"Article 113674"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global low regularity solutions to the Benjamin equation in weighted spaces\",\"authors\":\"Sergey Shindin,&nbsp;Nabendra Parumasur\",\"doi\":\"10.1016/j.na.2024.113674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that the Benjamin equation is globally well-posed for real-valued data in the weighted space <span><span><span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>∩</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>2</mn><mi>r</mi></mrow></msubsup><mo>≔</mo><mrow><mo>{</mo><mrow><mi>u</mi><mspace></mspace><mo>|</mo><mspace></mspace><msub><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><mover><mrow><mi>u</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mi>ξ</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mrow><mo>|</mo><mi>ξ</mi><mo>|</mo></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mrow><mo>(</mo><mi>s</mi><mo>−</mo><mn>2</mn><mi>r</mi><mo>)</mo></mrow></mrow></msup><mi>d</mi><mi>ξ</mi><mo>)</mo></mrow></mrow></msub><mo>&lt;</mo><mi>∞</mi></mrow><mo>}</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mn>0</mn><mo>≤</mo><mi>r</mi></mrow></math></span> and <span><math><mrow><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>+</mo><mi>r</mi><mo>&lt;</mo><mi>s</mi></mrow></math></span>. The proof is based on direct extensions of standard linear and bilinear estimates originated in Kenig et al. (1993), Kenig et al. (1996), Linares (1999), Kozono et al. (2001), Colliander et al. (2003), Li and Wu (2010) to the weighted settings.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"250 \",\"pages\":\"Article 113674\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001937\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001937","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于加权空间 Hs∩Hrs-2r≔{u|‖u‖Hs(Rx)+‖uˆ‖Hr(Rξ+,(1+|ξ|)2(s-2r)dξ)<∞} 中的实值数据,本杰明方程在全局上是好求的,其中 0≤r 和-34+r<s。证明基于 Kenig 等人(1993 年)、Kenig 等人(1996 年)、Linares(1999 年)、Kozono 等人(2001 年)、Colliander 等人(2003 年)、Li 和 Wu(2010 年)将标准线性和双线性估计直接扩展到加权设置的基础上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global low regularity solutions to the Benjamin equation in weighted spaces
We show that the Benjamin equation is globally well-posed for real-valued data in the weighted space HsHrs2r{u|uHs(Rx)+uˆHr(Rξ+,(1+|ξ|)2(s2r)dξ)<},where 0r and 34+r<s. The proof is based on direct extensions of standard linear and bilinear estimates originated in Kenig et al. (1993), Kenig et al. (1996), Linares (1999), Kozono et al. (2001), Colliander et al. (2003), Li and Wu (2010) to the weighted settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信