Mohana Priya Jayavel, Ha Nguyen, Madina Sukhanova, Lucas Santana dos Santos, Behtash Nezami, Juehua Gao, Erica Vormittag-Nocito, Lawrence Jennings, Xinyan Lu
{"title":"35.脑膜瘤的综合全面基因组图谱分析:单一机构研究","authors":"Mohana Priya Jayavel, Ha Nguyen, Madina Sukhanova, Lucas Santana dos Santos, Behtash Nezami, Juehua Gao, Erica Vormittag-Nocito, Lawrence Jennings, Xinyan Lu","doi":"10.1016/j.cancergen.2024.08.037","DOIUrl":null,"url":null,"abstract":"<div><div>Meningioma is the most common central nervous system tumor and understudied because of its benign nature. High-grade meningiomas often show poorer outcome and enriched with high-risk copy-number-aberrations (CNAs) including losses/segmental-losses of chromosomes 1p, 3p, 4p/q, 6p/q, 10p/q, 14q, 18p/q and 19p/q, CDKN2A/B homozygous-deletion (CDKN2A/B-homo) and TERT promoter-mutation (TERTp) detected by comprehensive genomic profiling (CGP) including SNP-microarray, next generation sequencing (NGS) and DNA-methylation. In this study, we performed CGP on a large series of meningioma.</div><div>We identified 122 (45.2%) cases with high-risk CNAs in 270 cases assessed, including 33 WHO-grade-I, 67 WHO-grade-II and 22 WHO-grade-III. Fifty-one (41.8%) cases had hypodiploidy characterized by losses of 22, 14, 10, X/Y, 6 and 8; Eighteen (14.8%) showed polyploidy with relative losses of 1p, 14, 18, 6 and 10. In 53 (43.4%) cases with near-diploidy, half showed complex CNAs with losses/segmental-losses involving 1p, 3p, 19p,14q and 6q. Five cases (4.1%) showed CDKN2A/B-homo. NGS performed in 30 cases revealed mutations in NF2 (n=20), ARID1A (n=7), MSH6 (n=4). Seven (6.6%, 7/106) had TERTp mutation. Methylation profiling matched classifier for meningioma in 92% (79/86) of cases tested. CGP upgraded 58% WHO-grade-I and 67.2% WHO-grade-II tumors to WHO-grade-II and III, respectively. Although follow-up data is limited, 51 patients (41.8%) had tumor recurrence.</div><div>Our study showed that meningiomas are enriched by high-risk CNAs even in low-grade tumors, less frequent TERTp mutation or CDKN2A/B-homo. CGP is of clinical importance for tumor molecular characterizations. CGP should be utilized clinically and integrated in future WHO classifications for tumor grading and risk stratification.</div></div>","PeriodicalId":49225,"journal":{"name":"Cancer Genetics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"35. Integrated comprehensive genomic profiling of meningiomas: A single institutional study\",\"authors\":\"Mohana Priya Jayavel, Ha Nguyen, Madina Sukhanova, Lucas Santana dos Santos, Behtash Nezami, Juehua Gao, Erica Vormittag-Nocito, Lawrence Jennings, Xinyan Lu\",\"doi\":\"10.1016/j.cancergen.2024.08.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Meningioma is the most common central nervous system tumor and understudied because of its benign nature. High-grade meningiomas often show poorer outcome and enriched with high-risk copy-number-aberrations (CNAs) including losses/segmental-losses of chromosomes 1p, 3p, 4p/q, 6p/q, 10p/q, 14q, 18p/q and 19p/q, CDKN2A/B homozygous-deletion (CDKN2A/B-homo) and TERT promoter-mutation (TERTp) detected by comprehensive genomic profiling (CGP) including SNP-microarray, next generation sequencing (NGS) and DNA-methylation. In this study, we performed CGP on a large series of meningioma.</div><div>We identified 122 (45.2%) cases with high-risk CNAs in 270 cases assessed, including 33 WHO-grade-I, 67 WHO-grade-II and 22 WHO-grade-III. Fifty-one (41.8%) cases had hypodiploidy characterized by losses of 22, 14, 10, X/Y, 6 and 8; Eighteen (14.8%) showed polyploidy with relative losses of 1p, 14, 18, 6 and 10. In 53 (43.4%) cases with near-diploidy, half showed complex CNAs with losses/segmental-losses involving 1p, 3p, 19p,14q and 6q. Five cases (4.1%) showed CDKN2A/B-homo. NGS performed in 30 cases revealed mutations in NF2 (n=20), ARID1A (n=7), MSH6 (n=4). Seven (6.6%, 7/106) had TERTp mutation. Methylation profiling matched classifier for meningioma in 92% (79/86) of cases tested. CGP upgraded 58% WHO-grade-I and 67.2% WHO-grade-II tumors to WHO-grade-II and III, respectively. Although follow-up data is limited, 51 patients (41.8%) had tumor recurrence.</div><div>Our study showed that meningiomas are enriched by high-risk CNAs even in low-grade tumors, less frequent TERTp mutation or CDKN2A/B-homo. CGP is of clinical importance for tumor molecular characterizations. CGP should be utilized clinically and integrated in future WHO classifications for tumor grading and risk stratification.</div></div>\",\"PeriodicalId\":49225,\"journal\":{\"name\":\"Cancer Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210776224000759\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210776224000759","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
35. Integrated comprehensive genomic profiling of meningiomas: A single institutional study
Meningioma is the most common central nervous system tumor and understudied because of its benign nature. High-grade meningiomas often show poorer outcome and enriched with high-risk copy-number-aberrations (CNAs) including losses/segmental-losses of chromosomes 1p, 3p, 4p/q, 6p/q, 10p/q, 14q, 18p/q and 19p/q, CDKN2A/B homozygous-deletion (CDKN2A/B-homo) and TERT promoter-mutation (TERTp) detected by comprehensive genomic profiling (CGP) including SNP-microarray, next generation sequencing (NGS) and DNA-methylation. In this study, we performed CGP on a large series of meningioma.
We identified 122 (45.2%) cases with high-risk CNAs in 270 cases assessed, including 33 WHO-grade-I, 67 WHO-grade-II and 22 WHO-grade-III. Fifty-one (41.8%) cases had hypodiploidy characterized by losses of 22, 14, 10, X/Y, 6 and 8; Eighteen (14.8%) showed polyploidy with relative losses of 1p, 14, 18, 6 and 10. In 53 (43.4%) cases with near-diploidy, half showed complex CNAs with losses/segmental-losses involving 1p, 3p, 19p,14q and 6q. Five cases (4.1%) showed CDKN2A/B-homo. NGS performed in 30 cases revealed mutations in NF2 (n=20), ARID1A (n=7), MSH6 (n=4). Seven (6.6%, 7/106) had TERTp mutation. Methylation profiling matched classifier for meningioma in 92% (79/86) of cases tested. CGP upgraded 58% WHO-grade-I and 67.2% WHO-grade-II tumors to WHO-grade-II and III, respectively. Although follow-up data is limited, 51 patients (41.8%) had tumor recurrence.
Our study showed that meningiomas are enriched by high-risk CNAs even in low-grade tumors, less frequent TERTp mutation or CDKN2A/B-homo. CGP is of clinical importance for tumor molecular characterizations. CGP should be utilized clinically and integrated in future WHO classifications for tumor grading and risk stratification.
期刊介绍:
The aim of Cancer Genetics is to publish high quality scientific papers on the cellular, genetic and molecular aspects of cancer, including cancer predisposition and clinical diagnostic applications. Specific areas of interest include descriptions of new chromosomal, molecular or epigenetic alterations in benign and malignant diseases; novel laboratory approaches for identification and characterization of chromosomal rearrangements or genomic alterations in cancer cells; correlation of genetic changes with pathology and clinical presentation; and the molecular genetics of cancer predisposition. To reach a basic science and clinical multidisciplinary audience, we welcome original full-length articles, reviews, meeting summaries, brief reports, and letters to the editor.