E. Scharifi , M. Kahlmeyer , A. Suckau , S. Lotz , N. Sommer , R. Delir Nazarlou , D. Bailly , U. Weidig , K. Steinhoff
{"title":"同类和异类 AA6082 和 AA7075 摩擦搅拌焊接坯料的高应变速率拉伸变形","authors":"E. Scharifi , M. Kahlmeyer , A. Suckau , S. Lotz , N. Sommer , R. Delir Nazarlou , D. Bailly , U. Weidig , K. Steinhoff","doi":"10.1016/j.jajp.2024.100254","DOIUrl":null,"url":null,"abstract":"<div><div>Friction-stir-welding process has become an established solid-state technique for joining of dissimilar lightweight materials over the past decade by overcoming fundamental welding challenges such as solidification cracking, phase segregation and surface oxidation. Despite these unique capabilities, the resulting microstructure feature in the weld zone consisting of fine grains with a high dislocation density, challenges further heat treatment and forming processes. Hence, a high solution annealing temperature results in degradation of the adjusted microstructure and in a lower to reduced mechanical properties in case of dissimilar joints of precipitation-hardenable aluminum alloys. Subsequent hot forming therefore involves a great effort and requires further heat treatment steps. Thus, the present study investigates the effect of a recently introduced novel thermo-mechanical forming process on local deformation behavior of similar as well as dissimilar joints processed by friction-stir-welding technique of thin-walled AA6082 and AA7075 blanks. To avoid the complete elimination of the adjusted microstructure, the welding process is performed after a thermo-mechanical process consisting of solution annealing, die cooling and peak aging. Uniaxial tensile tests are then carried out at high strain rates ranging from <span><math><mover><mrow><mi>ε</mi></mrow><mi>˙</mi></mover></math></span> = 40 s<sup>-1</sup> to <span><math><mover><mrow><mi>ε</mi></mrow><mi>˙</mi></mover></math></span> = 400 s<sup>-1</sup>. The results show an increase in yield and ultimate tensile strength as well as in total elongation after failure with increasing strain rates. As the strain rate increases, the flow stress of similar weld of AA7075 is higher than those of AA6082 and the dissimilar weld of AA6082 and AA7075. Local deformation measurements reveal higher strain localization in the welded zone for similar welds, which leads to micro-crack initiation and failure due to strain accumulation. Microstructure analysis shows very fine equiaxed grain structure in the nugget zone and homogenous distribution of precipitates after friction stir welding process, which explain the plastic deformation behavior.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100254"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High strain rate tensile deformation of similar and dissimilar AA6082 and AA7075 friction-stir-welded blanks\",\"authors\":\"E. Scharifi , M. Kahlmeyer , A. Suckau , S. Lotz , N. Sommer , R. Delir Nazarlou , D. Bailly , U. Weidig , K. Steinhoff\",\"doi\":\"10.1016/j.jajp.2024.100254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Friction-stir-welding process has become an established solid-state technique for joining of dissimilar lightweight materials over the past decade by overcoming fundamental welding challenges such as solidification cracking, phase segregation and surface oxidation. Despite these unique capabilities, the resulting microstructure feature in the weld zone consisting of fine grains with a high dislocation density, challenges further heat treatment and forming processes. Hence, a high solution annealing temperature results in degradation of the adjusted microstructure and in a lower to reduced mechanical properties in case of dissimilar joints of precipitation-hardenable aluminum alloys. Subsequent hot forming therefore involves a great effort and requires further heat treatment steps. Thus, the present study investigates the effect of a recently introduced novel thermo-mechanical forming process on local deformation behavior of similar as well as dissimilar joints processed by friction-stir-welding technique of thin-walled AA6082 and AA7075 blanks. To avoid the complete elimination of the adjusted microstructure, the welding process is performed after a thermo-mechanical process consisting of solution annealing, die cooling and peak aging. Uniaxial tensile tests are then carried out at high strain rates ranging from <span><math><mover><mrow><mi>ε</mi></mrow><mi>˙</mi></mover></math></span> = 40 s<sup>-1</sup> to <span><math><mover><mrow><mi>ε</mi></mrow><mi>˙</mi></mover></math></span> = 400 s<sup>-1</sup>. The results show an increase in yield and ultimate tensile strength as well as in total elongation after failure with increasing strain rates. As the strain rate increases, the flow stress of similar weld of AA7075 is higher than those of AA6082 and the dissimilar weld of AA6082 and AA7075. Local deformation measurements reveal higher strain localization in the welded zone for similar welds, which leads to micro-crack initiation and failure due to strain accumulation. Microstructure analysis shows very fine equiaxed grain structure in the nugget zone and homogenous distribution of precipitates after friction stir welding process, which explain the plastic deformation behavior.</div></div>\",\"PeriodicalId\":34313,\"journal\":{\"name\":\"Journal of Advanced Joining Processes\",\"volume\":\"10 \",\"pages\":\"Article 100254\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Joining Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666330924000700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330924000700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High strain rate tensile deformation of similar and dissimilar AA6082 and AA7075 friction-stir-welded blanks
Friction-stir-welding process has become an established solid-state technique for joining of dissimilar lightweight materials over the past decade by overcoming fundamental welding challenges such as solidification cracking, phase segregation and surface oxidation. Despite these unique capabilities, the resulting microstructure feature in the weld zone consisting of fine grains with a high dislocation density, challenges further heat treatment and forming processes. Hence, a high solution annealing temperature results in degradation of the adjusted microstructure and in a lower to reduced mechanical properties in case of dissimilar joints of precipitation-hardenable aluminum alloys. Subsequent hot forming therefore involves a great effort and requires further heat treatment steps. Thus, the present study investigates the effect of a recently introduced novel thermo-mechanical forming process on local deformation behavior of similar as well as dissimilar joints processed by friction-stir-welding technique of thin-walled AA6082 and AA7075 blanks. To avoid the complete elimination of the adjusted microstructure, the welding process is performed after a thermo-mechanical process consisting of solution annealing, die cooling and peak aging. Uniaxial tensile tests are then carried out at high strain rates ranging from = 40 s-1 to = 400 s-1. The results show an increase in yield and ultimate tensile strength as well as in total elongation after failure with increasing strain rates. As the strain rate increases, the flow stress of similar weld of AA7075 is higher than those of AA6082 and the dissimilar weld of AA6082 and AA7075. Local deformation measurements reveal higher strain localization in the welded zone for similar welds, which leads to micro-crack initiation and failure due to strain accumulation. Microstructure analysis shows very fine equiaxed grain structure in the nugget zone and homogenous distribution of precipitates after friction stir welding process, which explain the plastic deformation behavior.