糯质岩储层水力压裂形态特征:实验研究

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Guchang Zhang , Bo Wang , Tiankui Guo , Fujian Zhou
{"title":"糯质岩储层水力压裂形态特征:实验研究","authors":"Guchang Zhang ,&nbsp;Bo Wang ,&nbsp;Tiankui Guo ,&nbsp;Fujian Zhou","doi":"10.1016/j.tafmec.2024.104685","DOIUrl":null,"url":null,"abstract":"<div><div>Hydraulic fracturing efficiently unlocks the vast energy potential of glutenite, a crucial unconventional tight oil/gas reservoir. However, the characteristics of the hydraulic fracture (HF) morphology is complex and remains unclear in highly heterogeneous glutenite reservoirs. It is challenging to design fracturing schemes effectively. In this work, rock mechanics experiments and ten groups of true triaxial hydraulic fracturing experiments were carried out to investigate the HF morphology. Critical factors such as horizontal stress difference (HSD), injection rate, fluid viscosity, gravel volume content, and gravel size were investigated. Based on computed tomography (CT) scanning technology, this work innovatively established a three-dimensional fracture characterization method in glutenite samples to observe fracture morphology. The results indicate that in glutenite reservoirs, the initiation positions of HF typically exhibit randomness, often occurring at multiple asymmetric points. The propagation directions of HF are influenced by both HSD and formation heterogeneity, frequently deviating from the direction of the maximum principal stress. The propagation behavior of HF encountering gravel mainly manifests as penetration and deflection. These behaviors are co-controlled by the penetration capability of HF and the shielding effect of gravel. Furthermore, under conditions of low HSD, high injection rate, low fluid viscosity, and large gravel size, HF morphology is more complex, with a high tendency to generate branched fractures. The initiation pressure is positively correlated with HSD, injection rate, and fracturing fluid viscosity, and negatively correlated with gravel content. This study provides a theoretical basis for the optimization of fracturing designs in glutenite reservoirs.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"134 ","pages":"Article 104685"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The characteristics of hydraulic fracture morphology in glutenite reservoirs: An experimental investigation\",\"authors\":\"Guchang Zhang ,&nbsp;Bo Wang ,&nbsp;Tiankui Guo ,&nbsp;Fujian Zhou\",\"doi\":\"10.1016/j.tafmec.2024.104685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydraulic fracturing efficiently unlocks the vast energy potential of glutenite, a crucial unconventional tight oil/gas reservoir. However, the characteristics of the hydraulic fracture (HF) morphology is complex and remains unclear in highly heterogeneous glutenite reservoirs. It is challenging to design fracturing schemes effectively. In this work, rock mechanics experiments and ten groups of true triaxial hydraulic fracturing experiments were carried out to investigate the HF morphology. Critical factors such as horizontal stress difference (HSD), injection rate, fluid viscosity, gravel volume content, and gravel size were investigated. Based on computed tomography (CT) scanning technology, this work innovatively established a three-dimensional fracture characterization method in glutenite samples to observe fracture morphology. The results indicate that in glutenite reservoirs, the initiation positions of HF typically exhibit randomness, often occurring at multiple asymmetric points. The propagation directions of HF are influenced by both HSD and formation heterogeneity, frequently deviating from the direction of the maximum principal stress. The propagation behavior of HF encountering gravel mainly manifests as penetration and deflection. These behaviors are co-controlled by the penetration capability of HF and the shielding effect of gravel. Furthermore, under conditions of low HSD, high injection rate, low fluid viscosity, and large gravel size, HF morphology is more complex, with a high tendency to generate branched fractures. The initiation pressure is positively correlated with HSD, injection rate, and fracturing fluid viscosity, and negatively correlated with gravel content. This study provides a theoretical basis for the optimization of fracturing designs in glutenite reservoirs.</div></div>\",\"PeriodicalId\":22879,\"journal\":{\"name\":\"Theoretical and Applied Fracture Mechanics\",\"volume\":\"134 \",\"pages\":\"Article 104685\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016784422400435X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016784422400435X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

水力压裂法能有效地释放糯辉岩--一种重要的非常规致密油气藏--的巨大能量潜力。然而,水力压裂(HF)形态特征非常复杂,在高度异质的糯质岩储层中仍不明确。有效设计压裂方案具有挑战性。在这项工作中,进行了岩石力学实验和十组真正的三轴水力压裂实验,以研究 HF 形态。研究了水平应力差(HSD)、注入率、流体粘度、砾石体积含量和砾石尺寸等关键因素。基于计算机断层扫描(CT)技术,该研究创新性地建立了一种三维裂缝表征方法,用于观察糯辉岩样品的裂缝形态。结果表明,在谷朊岩储层中,高频的起始位置通常表现出随机性,经常出现在多个不对称点上。高频的传播方向受到 HSD 和地层异质性的影响,经常偏离最大主应力的方向。高频遇到砾石时的传播行为主要表现为穿透和偏转。这些行为由高频的穿透能力和砾石的屏蔽效应共同控制。此外,在低 HSD、高注入率、低流体粘度和大粒径砾石条件下,高频形态更为复杂,极易产生分支裂缝。起始压力与 HSD、注入率和压裂液粘度呈正相关,与砾石含量呈负相关。这项研究为优化糯质岩储层的压裂设计提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The characteristics of hydraulic fracture morphology in glutenite reservoirs: An experimental investigation
Hydraulic fracturing efficiently unlocks the vast energy potential of glutenite, a crucial unconventional tight oil/gas reservoir. However, the characteristics of the hydraulic fracture (HF) morphology is complex and remains unclear in highly heterogeneous glutenite reservoirs. It is challenging to design fracturing schemes effectively. In this work, rock mechanics experiments and ten groups of true triaxial hydraulic fracturing experiments were carried out to investigate the HF morphology. Critical factors such as horizontal stress difference (HSD), injection rate, fluid viscosity, gravel volume content, and gravel size were investigated. Based on computed tomography (CT) scanning technology, this work innovatively established a three-dimensional fracture characterization method in glutenite samples to observe fracture morphology. The results indicate that in glutenite reservoirs, the initiation positions of HF typically exhibit randomness, often occurring at multiple asymmetric points. The propagation directions of HF are influenced by both HSD and formation heterogeneity, frequently deviating from the direction of the maximum principal stress. The propagation behavior of HF encountering gravel mainly manifests as penetration and deflection. These behaviors are co-controlled by the penetration capability of HF and the shielding effect of gravel. Furthermore, under conditions of low HSD, high injection rate, low fluid viscosity, and large gravel size, HF morphology is more complex, with a high tendency to generate branched fractures. The initiation pressure is positively correlated with HSD, injection rate, and fracturing fluid viscosity, and negatively correlated with gravel content. This study provides a theoretical basis for the optimization of fracturing designs in glutenite reservoirs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Applied Fracture Mechanics
Theoretical and Applied Fracture Mechanics 工程技术-工程:机械
CiteScore
8.40
自引率
18.90%
发文量
435
审稿时长
37 days
期刊介绍: Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind. The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信