在一个节点跨度上高效评估 B-样条曲线基函数的伯恩斯坦-贝塞尔系数

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Filip Chudy, Paweł Woźny
{"title":"在一个节点跨度上高效评估 B-样条曲线基函数的伯恩斯坦-贝塞尔系数","authors":"Filip Chudy,&nbsp;Paweł Woźny","doi":"10.1016/j.cad.2024.103804","DOIUrl":null,"url":null,"abstract":"<div><div>New differential-recurrence relations for B-spline basis functions are given. Using these relations, a recursive method for finding the Bernstein-Bézier coefficients of B-spline basis functions over a single knot span is proposed. The algorithm works for any knot sequence and has an asymptotically optimal computational complexity. Numerical experiments show that the new method gives results which preserve a high number of digits when compared to an approach which uses the well-known de Boor-Cox formula.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient evaluation of Bernstein-Bézier coefficients of B-spline basis functions over one knot span\",\"authors\":\"Filip Chudy,&nbsp;Paweł Woźny\",\"doi\":\"10.1016/j.cad.2024.103804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>New differential-recurrence relations for B-spline basis functions are given. Using these relations, a recursive method for finding the Bernstein-Bézier coefficients of B-spline basis functions over a single knot span is proposed. The algorithm works for any knot sequence and has an asymptotically optimal computational complexity. Numerical experiments show that the new method gives results which preserve a high number of digits when compared to an approach which uses the well-known de Boor-Cox formula.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010448524001313\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524001313","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

给出了 B-样条曲线基函数的新微分递推关系。利用这些关系,提出了一种在单节跨度上寻找 B-样条曲线基函数伯恩斯坦-贝塞尔系数的递归方法。该算法适用于任何节点序列,并具有渐近最优的计算复杂度。数值实验表明,与使用著名的 de Boor-Cox 公式的方法相比,新方法得出的结果保留了较高的位数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient evaluation of Bernstein-Bézier coefficients of B-spline basis functions over one knot span
New differential-recurrence relations for B-spline basis functions are given. Using these relations, a recursive method for finding the Bernstein-Bézier coefficients of B-spline basis functions over a single knot span is proposed. The algorithm works for any knot sequence and has an asymptotically optimal computational complexity. Numerical experiments show that the new method gives results which preserve a high number of digits when compared to an approach which uses the well-known de Boor-Cox formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信