eCAD-Net:利用深度神经网络从呆板的 B-Rep 模型重建可编辑的参数化 CAD 模型

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chao Zhang , Arnaud Polette , Romain Pinquié , Gregorio Carasi , Henri De Charnace , Jean-Philippe Pernot
{"title":"eCAD-Net:利用深度神经网络从呆板的 B-Rep 模型重建可编辑的参数化 CAD 模型","authors":"Chao Zhang ,&nbsp;Arnaud Polette ,&nbsp;Romain Pinquié ,&nbsp;Gregorio Carasi ,&nbsp;Henri De Charnace ,&nbsp;Jean-Philippe Pernot","doi":"10.1016/j.cad.2024.103806","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel framework capable of reconstructing editable parametric CAD models from dumb B-Rep models. First, each B-Rep model is represented with a network-friendly formalism based on UV-graph, which is then used as input of eCAD-Net, the new deep neural network-based algorithm that predicts feature-based CAD modeling sequences from the graph. Then, the sequences are scaled and fine-tuned using a feature matching algorithm that retrieves the exact parameter values from the input dumb CAD model. The output sequences are then converted in a series of CAD modeling operations to create an editable parametric CAD model in any CAD modeler. A cleaned dataset is used to learn and validate the proposed approach, and is provided with the article. The experimental results show that our approach outperforms existing methods on such reconstruction tasks, and it outputs editable parametric CAD models compatible with existing CAD modelers and ready for use in downstream engineering applications.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"eCAD-Net: Editable Parametric CAD Models Reconstruction from Dumb B-Rep Models Using Deep Neural Networks\",\"authors\":\"Chao Zhang ,&nbsp;Arnaud Polette ,&nbsp;Romain Pinquié ,&nbsp;Gregorio Carasi ,&nbsp;Henri De Charnace ,&nbsp;Jean-Philippe Pernot\",\"doi\":\"10.1016/j.cad.2024.103806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a novel framework capable of reconstructing editable parametric CAD models from dumb B-Rep models. First, each B-Rep model is represented with a network-friendly formalism based on UV-graph, which is then used as input of eCAD-Net, the new deep neural network-based algorithm that predicts feature-based CAD modeling sequences from the graph. Then, the sequences are scaled and fine-tuned using a feature matching algorithm that retrieves the exact parameter values from the input dumb CAD model. The output sequences are then converted in a series of CAD modeling operations to create an editable parametric CAD model in any CAD modeler. A cleaned dataset is used to learn and validate the proposed approach, and is provided with the article. The experimental results show that our approach outperforms existing methods on such reconstruction tasks, and it outputs editable parametric CAD models compatible with existing CAD modelers and ready for use in downstream engineering applications.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010448524001337\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524001337","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种能够从哑巴 B-Rep 模型重建可编辑参数化 CAD 模型的新型框架。首先,每个 B-Rep 模型都使用基于 UV 图的网络友好形式表示,然后将其作为 eCAD-Net 的输入,eCAD-Net 是一种基于深度神经网络的新算法,可从图中预测基于特征的 CAD 建模序列。然后,使用特征匹配算法对序列进行缩放和微调,该算法可从输入的哑计算机辅助设计模型中检索精确的参数值。然后在一系列 CAD 建模操作中转换输出序列,在任何 CAD 建模器中创建可编辑的参数化 CAD 模型。本文提供了一个经过清理的数据集,用于学习和验证所提出的方法。实验结果表明,在此类重建任务中,我们的方法优于现有方法,而且它输出的可编辑参数化 CAD 模型与现有 CAD 建模器兼容,可用于下游工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
eCAD-Net: Editable Parametric CAD Models Reconstruction from Dumb B-Rep Models Using Deep Neural Networks
This paper introduces a novel framework capable of reconstructing editable parametric CAD models from dumb B-Rep models. First, each B-Rep model is represented with a network-friendly formalism based on UV-graph, which is then used as input of eCAD-Net, the new deep neural network-based algorithm that predicts feature-based CAD modeling sequences from the graph. Then, the sequences are scaled and fine-tuned using a feature matching algorithm that retrieves the exact parameter values from the input dumb CAD model. The output sequences are then converted in a series of CAD modeling operations to create an editable parametric CAD model in any CAD modeler. A cleaned dataset is used to learn and validate the proposed approach, and is provided with the article. The experimental results show that our approach outperforms existing methods on such reconstruction tasks, and it outputs editable parametric CAD models compatible with existing CAD modelers and ready for use in downstream engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信