求解低阶塔克流形和张量列车流形上的高维动力系统的交叉插值法

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Behzad Ghahremani, Hessam Babaee
{"title":"求解低阶塔克流形和张量列车流形上的高维动力系统的交叉插值法","authors":"Behzad Ghahremani,&nbsp;Hessam Babaee","doi":"10.1016/j.cma.2024.117385","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel tensor interpolation algorithm for the time integration of nonlinear tensor differential equations (TDEs) on the tensor train and Tucker tensor low-rank manifolds, which are the building blocks of many tensor network decompositions. This paper builds upon our previous work (Donello et al., 2023) on solving nonlinear matrix differential equations on low-rank matrix manifolds using CUR decompositions. The methodology we present offers multiple advantages: (i) It delivers near-optimal computational savings both in terms of memory and floating-point operations by leveraging cross algorithms based on the discrete empirical interpolation method to strategically sample sparse entries of the time-discrete TDEs to advance the solution in low-rank form. (ii) Numerical demonstrations show that the time integration is robust in the presence of small singular values. (iii) High-order explicit Runge–Kutta time integration schemes are developed. (iv) The algorithm is easy to implement, as it requires the evaluation of the full-order model at strategically selected entries and does not use tangent space projections, whose efficient implementation is intrusive. We demonstrate the efficiency of the presented algorithm for several test cases, including a nonlinear 100-dimensional TDE for the evolution of a tensor of size <span><math><mrow><mn>7</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>100</mn></mrow></msup><mo>≈</mo><mn>3</mn><mo>.</mo><mn>2</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>184</mn></mrow></msup></mrow></math></span> and a stochastic advection–diffusion–reaction equation with a tensor of size <span><math><mrow><mn>4</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>9</mn></mrow></msup></mrow></math></span>.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross interpolation for solving high-dimensional dynamical systems on low-rank Tucker and tensor train manifolds\",\"authors\":\"Behzad Ghahremani,&nbsp;Hessam Babaee\",\"doi\":\"10.1016/j.cma.2024.117385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a novel tensor interpolation algorithm for the time integration of nonlinear tensor differential equations (TDEs) on the tensor train and Tucker tensor low-rank manifolds, which are the building blocks of many tensor network decompositions. This paper builds upon our previous work (Donello et al., 2023) on solving nonlinear matrix differential equations on low-rank matrix manifolds using CUR decompositions. The methodology we present offers multiple advantages: (i) It delivers near-optimal computational savings both in terms of memory and floating-point operations by leveraging cross algorithms based on the discrete empirical interpolation method to strategically sample sparse entries of the time-discrete TDEs to advance the solution in low-rank form. (ii) Numerical demonstrations show that the time integration is robust in the presence of small singular values. (iii) High-order explicit Runge–Kutta time integration schemes are developed. (iv) The algorithm is easy to implement, as it requires the evaluation of the full-order model at strategically selected entries and does not use tangent space projections, whose efficient implementation is intrusive. We demonstrate the efficiency of the presented algorithm for several test cases, including a nonlinear 100-dimensional TDE for the evolution of a tensor of size <span><math><mrow><mn>7</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>100</mn></mrow></msup><mo>≈</mo><mn>3</mn><mo>.</mo><mn>2</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>184</mn></mrow></msup></mrow></math></span> and a stochastic advection–diffusion–reaction equation with a tensor of size <span><math><mrow><mn>4</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>9</mn></mrow></msup></mrow></math></span>.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524006406\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524006406","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新颖的张量插值算法,用于在张量列车和塔克张量低阶流形上对非线性张量微分方程(TDE)进行时间积分。本文建立在我们之前利用 CUR 分解求解低阶矩阵流形上的非线性矩阵微分方程的工作(Donello 等人,2023 年)基础之上。我们提出的方法具有多重优势:(i) 它通过利用基于离散经验插值法的交叉算法,对时间离散 TDE 的稀疏条目进行策略性采样,以推进低秩形式的求解,从而在内存和浮点运算方面实现了近乎最优的计算节省。(ii) 数值演示表明,在存在小奇异值的情况下,时间积分是稳健的。(iii) 开发了高阶显式 Runge-Kutta 时间积分方案。(iv) 该算法易于实现,因为它只需在策略性选择的条目处对全阶模型进行评估,而无需使用切线空间投影,因为切线空间投影的有效实现具有侵入性。我们在几个测试案例中证明了所提出算法的效率,其中包括张量大小为 70100≈3.2×10184 的非线性 100 维 TDE 演化和张量大小为 4.7×109 的随机平流-扩散-反应方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross interpolation for solving high-dimensional dynamical systems on low-rank Tucker and tensor train manifolds
We present a novel tensor interpolation algorithm for the time integration of nonlinear tensor differential equations (TDEs) on the tensor train and Tucker tensor low-rank manifolds, which are the building blocks of many tensor network decompositions. This paper builds upon our previous work (Donello et al., 2023) on solving nonlinear matrix differential equations on low-rank matrix manifolds using CUR decompositions. The methodology we present offers multiple advantages: (i) It delivers near-optimal computational savings both in terms of memory and floating-point operations by leveraging cross algorithms based on the discrete empirical interpolation method to strategically sample sparse entries of the time-discrete TDEs to advance the solution in low-rank form. (ii) Numerical demonstrations show that the time integration is robust in the presence of small singular values. (iii) High-order explicit Runge–Kutta time integration schemes are developed. (iv) The algorithm is easy to implement, as it requires the evaluation of the full-order model at strategically selected entries and does not use tangent space projections, whose efficient implementation is intrusive. We demonstrate the efficiency of the presented algorithm for several test cases, including a nonlinear 100-dimensional TDE for the evolution of a tensor of size 701003.2×10184 and a stochastic advection–diffusion–reaction equation with a tensor of size 4.7×109.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信