{"title":"纳米孔网络连通性对封闭关联流体相行为的影响","authors":"Sashanka Sekhar Mandal , Sudhir Kumar Singh , Sandip Khan","doi":"10.1016/j.fluid.2024.114235","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the phase behavior of associating fluids inside heterogeneous slit pores. Two distinct phase transitions are observed for connected pores of two slit widths for both hard and attractive walls. In the case of the hard wall, the wider pore undergoes the vapor-liquid transition earlier than the narrower pore due to its weaker confinement and increased fluid interactions. In the case of an attractive pore surface, the narrower pore undergoes the vapor-liquid transition earlier than the wider pore. This can be attributed to the enhanced surface interactions in the narrower pore, which promote the condensation of the fluid phase. The x-density profile of the systems reveals that the interfacial fluid molecules play an essential role in early/delayed phase transition in the respective pores of the heterogeneous systems.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"588 ","pages":"Article 114235"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of nanopore network connectivity on the phase behavior of confined associating fluids\",\"authors\":\"Sashanka Sekhar Mandal , Sudhir Kumar Singh , Sandip Khan\",\"doi\":\"10.1016/j.fluid.2024.114235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the phase behavior of associating fluids inside heterogeneous slit pores. Two distinct phase transitions are observed for connected pores of two slit widths for both hard and attractive walls. In the case of the hard wall, the wider pore undergoes the vapor-liquid transition earlier than the narrower pore due to its weaker confinement and increased fluid interactions. In the case of an attractive pore surface, the narrower pore undergoes the vapor-liquid transition earlier than the wider pore. This can be attributed to the enhanced surface interactions in the narrower pore, which promote the condensation of the fluid phase. The x-density profile of the systems reveals that the interfacial fluid molecules play an essential role in early/delayed phase transition in the respective pores of the heterogeneous systems.</div></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"588 \",\"pages\":\"Article 114235\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381224002103\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224002103","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了异质狭缝孔隙内关联流体的相行为。在硬壁和吸引壁两种狭缝宽度的连通孔隙中观察到两种截然不同的相变。在硬壁的情况下,较宽的孔隙比较窄的孔隙更早发生汽液转换,原因是较窄小的孔隙的封闭性较弱,流体间的相互作用增加。在孔隙表面有吸引力的情况下,较窄的孔隙比较宽的孔隙更早发生汽液转换。这可能是由于较窄孔隙中的表面相互作用增强,促进了流体相的凝结。系统的 x 密度曲线显示,界面流体分子在异质系统各自孔隙的早期/延迟相变中起着至关重要的作用。
Effect of nanopore network connectivity on the phase behavior of confined associating fluids
We investigate the phase behavior of associating fluids inside heterogeneous slit pores. Two distinct phase transitions are observed for connected pores of two slit widths for both hard and attractive walls. In the case of the hard wall, the wider pore undergoes the vapor-liquid transition earlier than the narrower pore due to its weaker confinement and increased fluid interactions. In the case of an attractive pore surface, the narrower pore undergoes the vapor-liquid transition earlier than the wider pore. This can be attributed to the enhanced surface interactions in the narrower pore, which promote the condensation of the fluid phase. The x-density profile of the systems reveals that the interfacial fluid molecules play an essential role in early/delayed phase transition in the respective pores of the heterogeneous systems.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.