通过配位结构调制实现掺杂 Sb3+ 的零维有机锡(IV)基金属卤化物在蓝光激发下的高效宽带近红外发射

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Bao Ke, Hui Peng, Yongqi Yang, Chengzhi Yang, Shangfei Yao, Arfan Bukhtiar, Qilin Wei, Jialong Zhao, Bingsuo Zou
{"title":"通过配位结构调制实现掺杂 Sb3+ 的零维有机锡(IV)基金属卤化物在蓝光激发下的高效宽带近红外发射","authors":"Bao Ke, Hui Peng, Yongqi Yang, Chengzhi Yang, Shangfei Yao, Arfan Bukhtiar, Qilin Wei, Jialong Zhao, Bingsuo Zou","doi":"10.1039/d4qi01904k","DOIUrl":null,"url":null,"abstract":"Realizing Sb3+-activated efficient broadband near-infrared (NIR) emission under blue light excitation remains a significant challenge in lead-free metal halides. To overcome the above difficulties, a coordination structure modulation strategy was adopted, and the broadband NIR emission under blue light excitation was achieved in Sb3+-doped zero-dimensional (0D) organic tin(IV) bromide. Compared to the weak visible light emission with a photoluminescence quantum yield (PLQY) of 2.4% for pure (TBP)2SbBr5 (TBP = Tetrabutylphosphonium), Sb3+-doped (TBP)2SnBr6 exhibits efficient broadband NIR emission band at 705 nm with PLQY of 33.2% upon 452 nm excitation, which stems from self-trapped exciton emission. Combined with experiments and theoretical calculations, we find that the large excited-state lattice distortion degree compared to the ground state and the narrow bandgap are dominant reasons for Sb3+-doped (TBP)2SnBr6 shows efficient NIR emission under blue light excitation. More particularly, Sb3+-doped (TBP)2SnBr6 also has excellent anti-water stability, existing stably in water for more than 4 hours while maintaining high luminous efficiency. Based on the excellent stability and unique optical properties of Sb3+-doped (TBP)2SnBr6, a high-performance NIR light-emitting diode (LED) was fabricated by combining a commercial blue LED chip, and its application in night vision was demonstrated.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realizing Efficient Broadband Near-Infrared Emission under Blue Light Excitation in Sb3+-Doped Zero-Dimensional Organic Tin(IV)-Based Metal Halides via Coordination Structure Modulation\",\"authors\":\"Bao Ke, Hui Peng, Yongqi Yang, Chengzhi Yang, Shangfei Yao, Arfan Bukhtiar, Qilin Wei, Jialong Zhao, Bingsuo Zou\",\"doi\":\"10.1039/d4qi01904k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Realizing Sb3+-activated efficient broadband near-infrared (NIR) emission under blue light excitation remains a significant challenge in lead-free metal halides. To overcome the above difficulties, a coordination structure modulation strategy was adopted, and the broadband NIR emission under blue light excitation was achieved in Sb3+-doped zero-dimensional (0D) organic tin(IV) bromide. Compared to the weak visible light emission with a photoluminescence quantum yield (PLQY) of 2.4% for pure (TBP)2SbBr5 (TBP = Tetrabutylphosphonium), Sb3+-doped (TBP)2SnBr6 exhibits efficient broadband NIR emission band at 705 nm with PLQY of 33.2% upon 452 nm excitation, which stems from self-trapped exciton emission. Combined with experiments and theoretical calculations, we find that the large excited-state lattice distortion degree compared to the ground state and the narrow bandgap are dominant reasons for Sb3+-doped (TBP)2SnBr6 shows efficient NIR emission under blue light excitation. More particularly, Sb3+-doped (TBP)2SnBr6 also has excellent anti-water stability, existing stably in water for more than 4 hours while maintaining high luminous efficiency. Based on the excellent stability and unique optical properties of Sb3+-doped (TBP)2SnBr6, a high-performance NIR light-emitting diode (LED) was fabricated by combining a commercial blue LED chip, and its application in night vision was demonstrated.\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qi01904k\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi01904k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在蓝光激发下实现 Sb3+ 激活的高效宽带近红外(NIR)发射仍然是无铅金属卤化物的一个重大挑战。为了克服上述困难,我们采用配位结构调控策略,在掺杂 Sb3+ 的零维(0D)有机溴化锡(IV)中实现了蓝光激发下的宽带近红外发射。与纯(TBP)2SbBr5(TBP = 四丁基膦)在光致发光量子产率(PLQY)为 2.4% 的微弱可见光发射相比,掺杂 Sb3+ 的(TBP)2SnBr6 在 452 nm 激发下在 705 nm 处显示出高效的宽带近红外发射带,PLQY 为 33.2%,这源于自俘获激子发射。结合实验和理论计算,我们发现与基态相比,激发态晶格畸变程度大和带隙窄是 Sb3+ 掺杂(TBP)2SnBr6 在蓝光激发下产生高效近红外发射的主要原因。更特别的是,掺杂 Sb3+ 的 (TBP)2SnBr6 还具有优异的抗水稳定性,可在水中稳定存在 4 小时以上,同时保持较高的发光效率。基于掺杂 Sb3+ 的(TBP)2SnBr6 的优异稳定性和独特光学特性,我们结合商用蓝光 LED 芯片制作了一种高性能近红外发光二极管(LED),并展示了它在夜视领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realizing Efficient Broadband Near-Infrared Emission under Blue Light Excitation in Sb3+-Doped Zero-Dimensional Organic Tin(IV)-Based Metal Halides via Coordination Structure Modulation
Realizing Sb3+-activated efficient broadband near-infrared (NIR) emission under blue light excitation remains a significant challenge in lead-free metal halides. To overcome the above difficulties, a coordination structure modulation strategy was adopted, and the broadband NIR emission under blue light excitation was achieved in Sb3+-doped zero-dimensional (0D) organic tin(IV) bromide. Compared to the weak visible light emission with a photoluminescence quantum yield (PLQY) of 2.4% for pure (TBP)2SbBr5 (TBP = Tetrabutylphosphonium), Sb3+-doped (TBP)2SnBr6 exhibits efficient broadband NIR emission band at 705 nm with PLQY of 33.2% upon 452 nm excitation, which stems from self-trapped exciton emission. Combined with experiments and theoretical calculations, we find that the large excited-state lattice distortion degree compared to the ground state and the narrow bandgap are dominant reasons for Sb3+-doped (TBP)2SnBr6 shows efficient NIR emission under blue light excitation. More particularly, Sb3+-doped (TBP)2SnBr6 also has excellent anti-water stability, existing stably in water for more than 4 hours while maintaining high luminous efficiency. Based on the excellent stability and unique optical properties of Sb3+-doped (TBP)2SnBr6, a high-performance NIR light-emitting diode (LED) was fabricated by combining a commercial blue LED chip, and its application in night vision was demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信