地幔矿物和玄武熔体之间的锌分配:重新审视锌/铁氧化还原替代物的应用

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Zhongxing Sun , Mingdi Gao , Xiaolin Xiong
{"title":"地幔矿物和玄武熔体之间的锌分配:重新审视锌/铁氧化还原替代物的应用","authors":"Zhongxing Sun ,&nbsp;Mingdi Gao ,&nbsp;Xiaolin Xiong","doi":"10.1016/j.gca.2024.09.010","DOIUrl":null,"url":null,"abstract":"<div><div>Zn/Fe<sup>T</sup> (Fe<sup>T</sup>=Fe<sup>2+</sup> + Fe<sup>3+</sup>) ratios in primitive melts have been proposed as a redox proxy to assess the redox states of the upper mantle. However, to effectively use the melt Zn/Fe<sup>T</sup> ratio as a redox proxy, it is necessary to compare variations of melt Zn/Fe<sup>T</sup> ratios induced by changes in oxygen fugacity (<em>f</em>O<sub>2</sub>) with variations due to changes in Zn-Fe contents and mineralogy of the sources. Here we show that the melt Zn/Fe<sup>T</sup> ratio variation caused by <em>f</em>O<sub>2</sub> change can be expressed as Δ(Zn<sub>m</sub>/<span><math><msubsup><mtext>Fe</mtext><mrow><mtext>m</mtext></mrow><mtext>T</mtext></msubsup></math></span>) = (Zn<sub>per</sub>/<span><math><msubsup><mtext>Fe</mtext><mrow><mtext>per</mtext></mrow><mtext>T</mtext></msubsup></math></span>)* <span><math><mrow><mi>Δ</mi><mo>(</mo><msubsup><mrow><mi>F</mi><mi>e</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>F</mi><mi>e</mi></mrow><mrow><mi>m</mi></mrow><mi>T</mi></msubsup><mo>)</mo></mrow></math></span>/(<span><math><msubsup><mtext>D</mtext><mrow><mtext>Zn</mtext></mrow><mtext>per/m</mtext></msubsup></math></span>/<span><math><msubsup><mtext>D</mtext><mrow><msup><mrow><mtext>Fe</mtext></mrow><mtext>2+</mtext></msup></mrow><mtext>per/m</mtext></msubsup></math></span>). Zn/Fe<sup>T</sup> ratios in most arc and MORB peridotites (Zn<sub>per</sub>/<span><math><msubsup><mtext>Fe</mtext><mrow><mtext>per</mtext></mrow><mtext>T</mtext></msubsup></math></span>) are 9.0 ± 1.0*10<sup>−4</sup>, and melt Fe<sup>2+</sup>/Fe<sup>T</sup> ratio variation resulted from <em>f</em>O<sub>2</sub> change [<span><math><mrow><mi>Δ</mi><mo>(</mo><msubsup><mrow><mi>F</mi><mi>e</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>F</mi><mi>e</mi></mrow><mrow><mi>m</mi></mrow><mi>T</mi></msubsup><mo>)</mo></mrow></math></span>] can be easily obtained by the existing model. Hence, if the Zn and Fe<sup>2+</sup> partition coefficients (<span><math><msubsup><mtext>D</mtext><mrow><mtext>Zn</mtext></mrow><mtext>per/m</mtext></msubsup></math></span> and <span><math><msubsup><mtext>D</mtext><mrow><msup><mrow><mtext>Fe</mtext></mrow><mtext>2+</mtext></msup></mrow><mtext>per/m</mtext></msubsup></math></span>) between melt and peridotite are known, the melt Zn/Fe<sup>T</sup> ratio variation resulting from <em>f</em>O<sub>2</sub> change can be estimated. In this study, we determined D<sub>Zn</sub> between olivine, orthopyroxene, clinopyroxene and basaltic melts at 0.75–2.5 GPa and 1250–1450 ℃. Our data show that melt composition (expressed as MgO content) dominantly controls the mineral-melt Zn partitioning under peridotite melting conditions. These data, along with published mineral-melt <span><math><msub><mtext>D</mtext><msup><mrow><mtext>Fe</mtext></mrow><mtext>2+</mtext></msup></msub></math></span> data, enable us to calculate appropriate <span><math><msubsup><mtext>D</mtext><mrow><mtext>Zn</mtext></mrow><mtext>per/m</mtext></msubsup></math></span>/<span><math><msubsup><mtext>D</mtext><mrow><msup><mrow><mtext>Fe</mtext></mrow><mtext>2+</mtext></msup></mrow><mtext>per/m</mtext></msubsup></math></span>, which is 0.78 ± 0.02 under arc and MORB spinel peridotite melting conditions. Based on these parameters, the calculated average melt Zn/Fe<sup>T</sup> ratio variation caused by per log unity <em>f</em>O<sub>2</sub> change in typical <em>f</em>O<sub>2</sub> span of arc and MORB mantles is only ∼ 0.69 ± 0.20*10<sup>−4</sup>. Alternatively, melt Zn/Fe<sup>T</sup> ratio variations caused by changes in Zn-Fe contents and mineralogy of peridotites are ±1.10*10<sup>−4</sup>. These findings indicate that melt Zn/Fe<sup>T</sup> ratio variation induced by one log units <em>f</em>O<sub>2</sub> change is on the same order of magnitude as those caused by changes in Zn-Fe contents and mineralogy of peridotites. Therefore, unless the precise chemical and mineralogical compositions of the mantle sources can be determined independently, the melt Zn/Fe<sup>T</sup> redox proxy is unsuitable for tracing the mantle <em>f</em>O<sub>2</sub>. Our study, combined with recent works on melt Cu and V/Sc redox proxies, suggests that these redox proxies, previously considered as the strongest evidence for a reduced arc mantle, might not support the idea of a reduced arc mantle.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"385 ","pages":"Pages 141-155"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc partitioning between mantle minerals and basaltic melts: Application to revisit the Zn/FeT redox proxy\",\"authors\":\"Zhongxing Sun ,&nbsp;Mingdi Gao ,&nbsp;Xiaolin Xiong\",\"doi\":\"10.1016/j.gca.2024.09.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zn/Fe<sup>T</sup> (Fe<sup>T</sup>=Fe<sup>2+</sup> + Fe<sup>3+</sup>) ratios in primitive melts have been proposed as a redox proxy to assess the redox states of the upper mantle. However, to effectively use the melt Zn/Fe<sup>T</sup> ratio as a redox proxy, it is necessary to compare variations of melt Zn/Fe<sup>T</sup> ratios induced by changes in oxygen fugacity (<em>f</em>O<sub>2</sub>) with variations due to changes in Zn-Fe contents and mineralogy of the sources. Here we show that the melt Zn/Fe<sup>T</sup> ratio variation caused by <em>f</em>O<sub>2</sub> change can be expressed as Δ(Zn<sub>m</sub>/<span><math><msubsup><mtext>Fe</mtext><mrow><mtext>m</mtext></mrow><mtext>T</mtext></msubsup></math></span>) = (Zn<sub>per</sub>/<span><math><msubsup><mtext>Fe</mtext><mrow><mtext>per</mtext></mrow><mtext>T</mtext></msubsup></math></span>)* <span><math><mrow><mi>Δ</mi><mo>(</mo><msubsup><mrow><mi>F</mi><mi>e</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>F</mi><mi>e</mi></mrow><mrow><mi>m</mi></mrow><mi>T</mi></msubsup><mo>)</mo></mrow></math></span>/(<span><math><msubsup><mtext>D</mtext><mrow><mtext>Zn</mtext></mrow><mtext>per/m</mtext></msubsup></math></span>/<span><math><msubsup><mtext>D</mtext><mrow><msup><mrow><mtext>Fe</mtext></mrow><mtext>2+</mtext></msup></mrow><mtext>per/m</mtext></msubsup></math></span>). Zn/Fe<sup>T</sup> ratios in most arc and MORB peridotites (Zn<sub>per</sub>/<span><math><msubsup><mtext>Fe</mtext><mrow><mtext>per</mtext></mrow><mtext>T</mtext></msubsup></math></span>) are 9.0 ± 1.0*10<sup>−4</sup>, and melt Fe<sup>2+</sup>/Fe<sup>T</sup> ratio variation resulted from <em>f</em>O<sub>2</sub> change [<span><math><mrow><mi>Δ</mi><mo>(</mo><msubsup><mrow><mi>F</mi><mi>e</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>F</mi><mi>e</mi></mrow><mrow><mi>m</mi></mrow><mi>T</mi></msubsup><mo>)</mo></mrow></math></span>] can be easily obtained by the existing model. Hence, if the Zn and Fe<sup>2+</sup> partition coefficients (<span><math><msubsup><mtext>D</mtext><mrow><mtext>Zn</mtext></mrow><mtext>per/m</mtext></msubsup></math></span> and <span><math><msubsup><mtext>D</mtext><mrow><msup><mrow><mtext>Fe</mtext></mrow><mtext>2+</mtext></msup></mrow><mtext>per/m</mtext></msubsup></math></span>) between melt and peridotite are known, the melt Zn/Fe<sup>T</sup> ratio variation resulting from <em>f</em>O<sub>2</sub> change can be estimated. In this study, we determined D<sub>Zn</sub> between olivine, orthopyroxene, clinopyroxene and basaltic melts at 0.75–2.5 GPa and 1250–1450 ℃. Our data show that melt composition (expressed as MgO content) dominantly controls the mineral-melt Zn partitioning under peridotite melting conditions. These data, along with published mineral-melt <span><math><msub><mtext>D</mtext><msup><mrow><mtext>Fe</mtext></mrow><mtext>2+</mtext></msup></msub></math></span> data, enable us to calculate appropriate <span><math><msubsup><mtext>D</mtext><mrow><mtext>Zn</mtext></mrow><mtext>per/m</mtext></msubsup></math></span>/<span><math><msubsup><mtext>D</mtext><mrow><msup><mrow><mtext>Fe</mtext></mrow><mtext>2+</mtext></msup></mrow><mtext>per/m</mtext></msubsup></math></span>, which is 0.78 ± 0.02 under arc and MORB spinel peridotite melting conditions. Based on these parameters, the calculated average melt Zn/Fe<sup>T</sup> ratio variation caused by per log unity <em>f</em>O<sub>2</sub> change in typical <em>f</em>O<sub>2</sub> span of arc and MORB mantles is only ∼ 0.69 ± 0.20*10<sup>−4</sup>. Alternatively, melt Zn/Fe<sup>T</sup> ratio variations caused by changes in Zn-Fe contents and mineralogy of peridotites are ±1.10*10<sup>−4</sup>. These findings indicate that melt Zn/Fe<sup>T</sup> ratio variation induced by one log units <em>f</em>O<sub>2</sub> change is on the same order of magnitude as those caused by changes in Zn-Fe contents and mineralogy of peridotites. Therefore, unless the precise chemical and mineralogical compositions of the mantle sources can be determined independently, the melt Zn/Fe<sup>T</sup> redox proxy is unsuitable for tracing the mantle <em>f</em>O<sub>2</sub>. Our study, combined with recent works on melt Cu and V/Sc redox proxies, suggests that these redox proxies, previously considered as the strongest evidence for a reduced arc mantle, might not support the idea of a reduced arc mantle.</div></div>\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"385 \",\"pages\":\"Pages 141-155\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016703724004915\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703724004915","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

原始熔体中的 Zn/FeT(FeT=Fe2+ + Fe3+)比率被认为是评估上地幔氧化还原状态的氧化还原替代物。然而,要有效地利用熔体 Zn/FeT 比值作为氧化还原代用指标,就必须将氧富集度(fO2)变化引起的熔体 Zn/FeT 比值变化与源 Zn-Fe 含量和矿物学变化引起的熔体 Zn/FeT 比值变化进行比较。我们在此表明,由 fO2 变化引起的熔体 Zn/FeT 比率变化可表示为 Δ(Znm/FemT) = (Znper/FeperT)* Δ(Fem2+/FemT)/(DZnper/m/DFe2+per/m) 。大多数弧橄榄岩和MORB橄榄岩的Zn/FeT比值(Znper/FeperT)为9.0±1.0*10-4,由fO2变化引起的熔体Fe2+/FeT比值变化[Δ(Fem2+/FemT)]可由现有模型轻松求得。因此,如果已知熔体与橄榄岩之间的Zn和Fe2+分配系数(DZnper/m和DFe2+per/m),就可以估算出fO2变化导致的熔体Zn/FeT比值变化。在这项研究中,我们测定了橄榄石、正长石、霞石和玄武熔体在 0.75-2.5 GPa 和 1250-1450 ℃ 下的 DZn。我们的数据表明,在橄榄岩熔融条件下,熔体成分(以氧化镁含量表示)主要控制着矿物-熔体的锌分配。这些数据以及已发表的矿物-熔体 DFe2+ 数据使我们能够计算出适当的 DZnper/m/DFe2+ per/m,在弧光和 MORB 尖晶橄榄岩熔融条件下,DZnper/m/DFe2+per/m 为 0.78 ± 0.02。根据这些参数,计算出在典型的电弧和 MORB 辉绿岩 fO2 跨度中,每对数单位 fO2 变化引起的平均熔体 Zn/FeT 比率变化仅为 ∼ 0.69 ± 0.20*10-4。另外,Zn-Fe含量和橄榄岩矿物学变化引起的熔体Zn/FeT比率变化为±1.10*10-4。这些结果表明,一个对数单位 fO2 变化引起的熔体 Zn/FeT 比率变化与橄榄岩 Zn-Fe 含量和矿物学变化引起的 Zn/FeT 比率变化处于同一数量级。因此,除非能够独立地确定地幔源的精确化学成分和矿物成分,否则熔体 Zn/FeT 氧化还原替代物不适合用于追踪地幔 fO2。我们的研究,结合最近对熔体Cu和V/Sc氧化还原代用指标的研究,表明这些氧化还原代用指标以前被认为是还原弧幔的最有力证据,但可能并不支持还原弧幔的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zinc partitioning between mantle minerals and basaltic melts: Application to revisit the Zn/FeT redox proxy
Zn/FeT (FeT=Fe2+ + Fe3+) ratios in primitive melts have been proposed as a redox proxy to assess the redox states of the upper mantle. However, to effectively use the melt Zn/FeT ratio as a redox proxy, it is necessary to compare variations of melt Zn/FeT ratios induced by changes in oxygen fugacity (fO2) with variations due to changes in Zn-Fe contents and mineralogy of the sources. Here we show that the melt Zn/FeT ratio variation caused by fO2 change can be expressed as Δ(Znm/FemT) = (Znper/FeperT)* Δ(Fem2+/FemT)/(DZnper/m/DFe2+per/m). Zn/FeT ratios in most arc and MORB peridotites (Znper/FeperT) are 9.0 ± 1.0*10−4, and melt Fe2+/FeT ratio variation resulted from fO2 change [Δ(Fem2+/FemT)] can be easily obtained by the existing model. Hence, if the Zn and Fe2+ partition coefficients (DZnper/m and DFe2+per/m) between melt and peridotite are known, the melt Zn/FeT ratio variation resulting from fO2 change can be estimated. In this study, we determined DZn between olivine, orthopyroxene, clinopyroxene and basaltic melts at 0.75–2.5 GPa and 1250–1450 ℃. Our data show that melt composition (expressed as MgO content) dominantly controls the mineral-melt Zn partitioning under peridotite melting conditions. These data, along with published mineral-melt DFe2+ data, enable us to calculate appropriate DZnper/m/DFe2+per/m, which is 0.78 ± 0.02 under arc and MORB spinel peridotite melting conditions. Based on these parameters, the calculated average melt Zn/FeT ratio variation caused by per log unity fO2 change in typical fO2 span of arc and MORB mantles is only ∼ 0.69 ± 0.20*10−4. Alternatively, melt Zn/FeT ratio variations caused by changes in Zn-Fe contents and mineralogy of peridotites are ±1.10*10−4. These findings indicate that melt Zn/FeT ratio variation induced by one log units fO2 change is on the same order of magnitude as those caused by changes in Zn-Fe contents and mineralogy of peridotites. Therefore, unless the precise chemical and mineralogical compositions of the mantle sources can be determined independently, the melt Zn/FeT redox proxy is unsuitable for tracing the mantle fO2. Our study, combined with recent works on melt Cu and V/Sc redox proxies, suggests that these redox proxies, previously considered as the strongest evidence for a reduced arc mantle, might not support the idea of a reduced arc mantle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信