绕黑洞运行的脉动球的混沌动力学

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Fernanda de F. Rodrigues, Ricardo A. Mosna, Ronaldo S. S. Vieira
{"title":"绕黑洞运行的脉动球的混沌动力学","authors":"Fernanda de F. Rodrigues,&nbsp;Ricardo A. Mosna,&nbsp;Ronaldo S. S. Vieira","doi":"10.1007/s10714-024-03300-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study the chaotic dynamics of spinless extended bodies in a wide class of spherically symmetric spacetimes, which encompasses black-hole scenarios in many modified theories of gravity. We show that a spherically symmetric pulsating ball may have chaotic motion in this class of spacetimes. The cases of the Reissner–Nordström and Ayón-Beato–García black holes are analyzed in detail. The equations of motion for the extended bodies are obtained according to Dixon’s formalism, up to quadrupole order. Then, we use Melnikov’s method to show the presence of homoclinic intersections, which imply chaotic behavior, as a consequence of our assumption that the test body has an oscillating radius.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chaotic dynamics of pulsating spheres orbiting black holes\",\"authors\":\"Fernanda de F. Rodrigues,&nbsp;Ricardo A. Mosna,&nbsp;Ronaldo S. S. Vieira\",\"doi\":\"10.1007/s10714-024-03300-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the chaotic dynamics of spinless extended bodies in a wide class of spherically symmetric spacetimes, which encompasses black-hole scenarios in many modified theories of gravity. We show that a spherically symmetric pulsating ball may have chaotic motion in this class of spacetimes. The cases of the Reissner–Nordström and Ayón-Beato–García black holes are analyzed in detail. The equations of motion for the extended bodies are obtained according to Dixon’s formalism, up to quadrupole order. Then, we use Melnikov’s method to show the presence of homoclinic intersections, which imply chaotic behavior, as a consequence of our assumption that the test body has an oscillating radius.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"56 10\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-024-03300-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03300-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了无自旋扩展体在一大类球面对称时空中的混沌动力学,其中包括许多修正引力理论中的黑洞情景。我们证明了球对称脉动球在这一类空间中可能存在混沌运动。我们详细分析了 Reissner-Nordström 和 Ayón-Beato-García 黑洞的情况。根据迪克森形式主义,我们得到了扩展体的运动方程,直至四极阶。然后,我们使用梅尔尼科夫方法证明了同次交点的存在,这意味着混沌行为,是我们假设测试体具有振荡半径的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chaotic dynamics of pulsating spheres orbiting black holes

Chaotic dynamics of pulsating spheres orbiting black holes

Chaotic dynamics of pulsating spheres orbiting black holes

We study the chaotic dynamics of spinless extended bodies in a wide class of spherically symmetric spacetimes, which encompasses black-hole scenarios in many modified theories of gravity. We show that a spherically symmetric pulsating ball may have chaotic motion in this class of spacetimes. The cases of the Reissner–Nordström and Ayón-Beato–García black holes are analyzed in detail. The equations of motion for the extended bodies are obtained according to Dixon’s formalism, up to quadrupole order. Then, we use Melnikov’s method to show the presence of homoclinic intersections, which imply chaotic behavior, as a consequence of our assumption that the test body has an oscillating radius.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信