Anthony Bilodeau, Albert Michaud-Gagnon, Julia Chabbert, Benoit Turcotte, Jörn Heine, Audrey Durand, Flavie Lavoie-Cardinal
{"title":"利用 pySTED 进行逼真模拟,开发人工智能辅助显微镜框架","authors":"Anthony Bilodeau, Albert Michaud-Gagnon, Julia Chabbert, Benoit Turcotte, Jörn Heine, Audrey Durand, Flavie Lavoie-Cardinal","doi":"10.1038/s42256-024-00903-w","DOIUrl":null,"url":null,"abstract":"The integration of artificial intelligence into microscopy systems significantly enhances performance, optimizing both image acquisition and analysis phases. Development of artificial intelligence-assisted super-resolution microscopy is often limited by access to large biological datasets, as well as by difficulties to benchmark and compare approaches on heterogeneous samples. We demonstrate the benefits of a realistic stimulated emission depletion microscopy simulation platform, pySTED, for the development and deployment of artificial intelligence strategies for super-resolution microscopy. pySTED integrates theoretically and empirically validated models for photobleaching and point spread function generation in stimulated emission depletion microscopy, as well as simulating realistic point-scanning dynamics and using a deep learning model to replicate the underlying structures of real images. This simulation environment can be used for data augmentation to train deep neural networks, for the development of online optimization strategies and to train reinforcement learning models. Using pySTED as a training environment allows the reinforcement learning models to bridge the gap between simulation and reality, as showcased by its successful deployment on a real microscope system without fine tuning. Stimulated emission depletion microscopy is a super-resolution imaging technique that utilizes point scanning in fluorescence microscopy. pySTED is developed to aid in the development and benchmarking of optical microscopy experiments, testing it in both synthetic and real settings.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 10","pages":"1197-1215"},"PeriodicalIF":18.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42256-024-00903-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of AI-assisted microscopy frameworks through realistic simulation with pySTED\",\"authors\":\"Anthony Bilodeau, Albert Michaud-Gagnon, Julia Chabbert, Benoit Turcotte, Jörn Heine, Audrey Durand, Flavie Lavoie-Cardinal\",\"doi\":\"10.1038/s42256-024-00903-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of artificial intelligence into microscopy systems significantly enhances performance, optimizing both image acquisition and analysis phases. Development of artificial intelligence-assisted super-resolution microscopy is often limited by access to large biological datasets, as well as by difficulties to benchmark and compare approaches on heterogeneous samples. We demonstrate the benefits of a realistic stimulated emission depletion microscopy simulation platform, pySTED, for the development and deployment of artificial intelligence strategies for super-resolution microscopy. pySTED integrates theoretically and empirically validated models for photobleaching and point spread function generation in stimulated emission depletion microscopy, as well as simulating realistic point-scanning dynamics and using a deep learning model to replicate the underlying structures of real images. This simulation environment can be used for data augmentation to train deep neural networks, for the development of online optimization strategies and to train reinforcement learning models. Using pySTED as a training environment allows the reinforcement learning models to bridge the gap between simulation and reality, as showcased by its successful deployment on a real microscope system without fine tuning. Stimulated emission depletion microscopy is a super-resolution imaging technique that utilizes point scanning in fluorescence microscopy. pySTED is developed to aid in the development and benchmarking of optical microscopy experiments, testing it in both synthetic and real settings.\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"6 10\",\"pages\":\"1197-1215\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42256-024-00903-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.nature.com/articles/s42256-024-00903-w\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00903-w","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Development of AI-assisted microscopy frameworks through realistic simulation with pySTED
The integration of artificial intelligence into microscopy systems significantly enhances performance, optimizing both image acquisition and analysis phases. Development of artificial intelligence-assisted super-resolution microscopy is often limited by access to large biological datasets, as well as by difficulties to benchmark and compare approaches on heterogeneous samples. We demonstrate the benefits of a realistic stimulated emission depletion microscopy simulation platform, pySTED, for the development and deployment of artificial intelligence strategies for super-resolution microscopy. pySTED integrates theoretically and empirically validated models for photobleaching and point spread function generation in stimulated emission depletion microscopy, as well as simulating realistic point-scanning dynamics and using a deep learning model to replicate the underlying structures of real images. This simulation environment can be used for data augmentation to train deep neural networks, for the development of online optimization strategies and to train reinforcement learning models. Using pySTED as a training environment allows the reinforcement learning models to bridge the gap between simulation and reality, as showcased by its successful deployment on a real microscope system without fine tuning. Stimulated emission depletion microscopy is a super-resolution imaging technique that utilizes point scanning in fluorescence microscopy. pySTED is developed to aid in the development and benchmarking of optical microscopy experiments, testing it in both synthetic and real settings.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.