{"title":"通过水平排水增强土工织物片材实现真空压力下软土固结的新理论解决方案","authors":"Hao Chen , Jian Chu , Shifan Wu , Wei Guo , Kokpang Lam","doi":"10.1016/j.geotexmem.2024.09.011","DOIUrl":null,"url":null,"abstract":"<div><div>Land reclamation is a major construction activity in Singapore and other Asian countries. When granular fills become scarce, soft materials have to be used for land reclamation. A new land reclamation and soil improvement method using vacuum preloading and horizontal drainage enhanced non-woven geotextile (HDeG) sheets for soft soil consolidation has been proposed to reduce consolidation time and save costs. This paper presents a new theoretical solution for analysing the consolidation process of soil under vacuum pressure via horizontal drainage enhanced geotextile sheets as such a solution is not available yet. To verify the proposed theoretical solution, model tests and finite element analyses (FEA) have also been conducted. The proposed analytical solution agrees well with the results from FEA and the model tests in settlement, average effective stress and degree of consolidation. Thus, this solution could be used for design and analysis for land reclamation with soft materials consolidated using vacuum preloading together with HDeG sheets or other horizontal drainage materials with an adequately high transmissivity. The prediction of the consolidation performance relies on the proper selection of the coefficient of consolidation based on the effective stress history of soil.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 155-168"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New theoretical solution for soft soil consolidation under vacuum pressure via horizontal drainage enhanced geotextile sheets\",\"authors\":\"Hao Chen , Jian Chu , Shifan Wu , Wei Guo , Kokpang Lam\",\"doi\":\"10.1016/j.geotexmem.2024.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Land reclamation is a major construction activity in Singapore and other Asian countries. When granular fills become scarce, soft materials have to be used for land reclamation. A new land reclamation and soil improvement method using vacuum preloading and horizontal drainage enhanced non-woven geotextile (HDeG) sheets for soft soil consolidation has been proposed to reduce consolidation time and save costs. This paper presents a new theoretical solution for analysing the consolidation process of soil under vacuum pressure via horizontal drainage enhanced geotextile sheets as such a solution is not available yet. To verify the proposed theoretical solution, model tests and finite element analyses (FEA) have also been conducted. The proposed analytical solution agrees well with the results from FEA and the model tests in settlement, average effective stress and degree of consolidation. Thus, this solution could be used for design and analysis for land reclamation with soft materials consolidated using vacuum preloading together with HDeG sheets or other horizontal drainage materials with an adequately high transmissivity. The prediction of the consolidation performance relies on the proper selection of the coefficient of consolidation based on the effective stress history of soil.</div></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"53 1\",\"pages\":\"Pages 155-168\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424001134\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424001134","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
New theoretical solution for soft soil consolidation under vacuum pressure via horizontal drainage enhanced geotextile sheets
Land reclamation is a major construction activity in Singapore and other Asian countries. When granular fills become scarce, soft materials have to be used for land reclamation. A new land reclamation and soil improvement method using vacuum preloading and horizontal drainage enhanced non-woven geotextile (HDeG) sheets for soft soil consolidation has been proposed to reduce consolidation time and save costs. This paper presents a new theoretical solution for analysing the consolidation process of soil under vacuum pressure via horizontal drainage enhanced geotextile sheets as such a solution is not available yet. To verify the proposed theoretical solution, model tests and finite element analyses (FEA) have also been conducted. The proposed analytical solution agrees well with the results from FEA and the model tests in settlement, average effective stress and degree of consolidation. Thus, this solution could be used for design and analysis for land reclamation with soft materials consolidated using vacuum preloading together with HDeG sheets or other horizontal drainage materials with an adequately high transmissivity. The prediction of the consolidation performance relies on the proper selection of the coefficient of consolidation based on the effective stress history of soil.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.