钯(II)与 1-甲基-2-巯基咪唑(甲巯咪唑)复合物的热力学和动力学研究及其对金属药物结构设计的重要性

IF 3.8 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
{"title":"钯(II)与 1-甲基-2-巯基咪唑(甲巯咪唑)复合物的热力学和动力学研究及其对金属药物结构设计的重要性","authors":"","doi":"10.1016/j.jinorgbio.2024.112722","DOIUrl":null,"url":null,"abstract":"<div><div>The acidobasic and complexing properties of 1-methyl-2-mercaptoimidazole (<em>Methimazole</em>, an anti-thyroid drug) were investigated. The p<em>K</em><sub>a</sub> 11.49 ± 0.03 was estimated by molecular absorption spectroscopy (<em>I</em> = 0.10 M NaCl, <em>t</em> = 25.0 ± 0.1 °C). This value is in good agreement with the value 11.58 ± 0.05, obtained using the solvent-extraction technique. Theoretical (LFER and quantum chemical calculations) and experimental (<sup>1</sup>H/<sup>13</sup>C NMR spectroscopy) methods confirmed that the ligand prefers to be in the thion form, and the proton dissociation takes place on the nitrogen atom. Using glass electrode potentiometry, the complexation of the Pd(II) ion by the <em>methimazole</em> ligand occurs without the participation of protons. The best chemical model considers the [Pd(HL)]<sup>2+</sup>, [Pd(HL)<sub>2</sub>]<sup>2+</sup> and [Pd(HL)<sub>3</sub>]<sup>2+</sup> complex species, whose stability constants were also determined using spectroscopy and capillary zone electrophoretic (CZE) measurements. The metal complexes dissociate at –log [H<sup>+</sup>] &gt; 7, where an uncharged palladium(II) hydroxide is formed. The formation kinetics of the palladium(II) complex with <em>methimazole</em> were studied in perchloric and hydrochloric acids (<em>I</em> = 1.00 M, <em>t</em> = 15–40 °C) and the determined rate constants and activation parameters are consistent with literature values determined for the reactions of the Pd(II) ion with thiourea derivatives. The rate constants decrease by two orders of magnitude in both media, which can be assigned to a lower tendency of the chloride ion to dissociate from the [PdCl<sub>4</sub>]<sup>2−</sup> complex species than the water molecule from the [Pd(H<sub>2</sub>O)<sub>4</sub>]<sup>2+</sup> ion. The presented results can be utilized for the design of new Pd and Pt metallodrugs.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic and kinetic study of palladium(II) complexation with 1-methyl-2-mercaptoimidazole (methimazole) and their importance for structural design of metallodrugs\",\"authors\":\"\",\"doi\":\"10.1016/j.jinorgbio.2024.112722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The acidobasic and complexing properties of 1-methyl-2-mercaptoimidazole (<em>Methimazole</em>, an anti-thyroid drug) were investigated. The p<em>K</em><sub>a</sub> 11.49 ± 0.03 was estimated by molecular absorption spectroscopy (<em>I</em> = 0.10 M NaCl, <em>t</em> = 25.0 ± 0.1 °C). This value is in good agreement with the value 11.58 ± 0.05, obtained using the solvent-extraction technique. Theoretical (LFER and quantum chemical calculations) and experimental (<sup>1</sup>H/<sup>13</sup>C NMR spectroscopy) methods confirmed that the ligand prefers to be in the thion form, and the proton dissociation takes place on the nitrogen atom. Using glass electrode potentiometry, the complexation of the Pd(II) ion by the <em>methimazole</em> ligand occurs without the participation of protons. The best chemical model considers the [Pd(HL)]<sup>2+</sup>, [Pd(HL)<sub>2</sub>]<sup>2+</sup> and [Pd(HL)<sub>3</sub>]<sup>2+</sup> complex species, whose stability constants were also determined using spectroscopy and capillary zone electrophoretic (CZE) measurements. The metal complexes dissociate at –log [H<sup>+</sup>] &gt; 7, where an uncharged palladium(II) hydroxide is formed. The formation kinetics of the palladium(II) complex with <em>methimazole</em> were studied in perchloric and hydrochloric acids (<em>I</em> = 1.00 M, <em>t</em> = 15–40 °C) and the determined rate constants and activation parameters are consistent with literature values determined for the reactions of the Pd(II) ion with thiourea derivatives. The rate constants decrease by two orders of magnitude in both media, which can be assigned to a lower tendency of the chloride ion to dissociate from the [PdCl<sub>4</sub>]<sup>2−</sup> complex species than the water molecule from the [Pd(H<sub>2</sub>O)<sub>4</sub>]<sup>2+</sup> ion. The presented results can be utilized for the design of new Pd and Pt metallodrugs.</div></div>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0162013424002460\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013424002460","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了 1-甲基-2-巯基咪唑(甲巯咪唑,一种抗甲状腺药物)的酸碱性和络合特性。通过分子吸收光谱(I = 0.10 M NaCl,t = 25.0 ± 0.1 °C)估算出 pKa 为 11.49 ± 0.03。该值与采用溶剂萃取技术得到的 11.58 ± 0.05 值十分吻合。理论(LFER 和量子化学计算)和实验(1H/13C NMR 光谱)方法证实,配体倾向于以硫离子形式存在,质子解离发生在氮原子上。利用玻璃电极电位测定法,甲巯咪唑配体与钯(II)离子的络合是在没有质子参与的情况下进行的。最佳化学模型考虑了[Pd(HL)]2+、[Pd(HL)2]2+ 和[Pd(HL)3]2+ 复合物物种,其稳定常数也是通过光谱和毛细管区电泳(CZE)测量确定的。金属配合物在 -log [H+] > 7 时解离,形成不带电的氢氧化钯(II)。在高氯酸和盐酸(I = 1.00 M,t = 15-40 °C)中研究了钯(II)络合物与甲巯咪唑的形成动力学,所测定的速率常数和活化参数与文献中测定的钯(II)离子与硫脲衍生物反应的数值一致。在这两种介质中,速率常数都降低了两个数量级,这可能是因为氯离子从[PdCl4]2- 复合物中解离的倾向低于水分子从[Pd(H2O)4]2+ 离子中解离的倾向。这些结果可用于设计新的钯和铂金属药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermodynamic and kinetic study of palladium(II) complexation with 1-methyl-2-mercaptoimidazole (methimazole) and their importance for structural design of metallodrugs

Thermodynamic and kinetic study of palladium(II) complexation with 1-methyl-2-mercaptoimidazole (methimazole) and their importance for structural design of metallodrugs
The acidobasic and complexing properties of 1-methyl-2-mercaptoimidazole (Methimazole, an anti-thyroid drug) were investigated. The pKa 11.49 ± 0.03 was estimated by molecular absorption spectroscopy (I = 0.10 M NaCl, t = 25.0 ± 0.1 °C). This value is in good agreement with the value 11.58 ± 0.05, obtained using the solvent-extraction technique. Theoretical (LFER and quantum chemical calculations) and experimental (1H/13C NMR spectroscopy) methods confirmed that the ligand prefers to be in the thion form, and the proton dissociation takes place on the nitrogen atom. Using glass electrode potentiometry, the complexation of the Pd(II) ion by the methimazole ligand occurs without the participation of protons. The best chemical model considers the [Pd(HL)]2+, [Pd(HL)2]2+ and [Pd(HL)3]2+ complex species, whose stability constants were also determined using spectroscopy and capillary zone electrophoretic (CZE) measurements. The metal complexes dissociate at –log [H+] > 7, where an uncharged palladium(II) hydroxide is formed. The formation kinetics of the palladium(II) complex with methimazole were studied in perchloric and hydrochloric acids (I = 1.00 M, t = 15–40 °C) and the determined rate constants and activation parameters are consistent with literature values determined for the reactions of the Pd(II) ion with thiourea derivatives. The rate constants decrease by two orders of magnitude in both media, which can be assigned to a lower tendency of the chloride ion to dissociate from the [PdCl4]2− complex species than the water molecule from the [Pd(H2O)4]2+ ion. The presented results can be utilized for the design of new Pd and Pt metallodrugs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inorganic Biochemistry
Journal of Inorganic Biochemistry 生物-生化与分子生物学
CiteScore
7.00
自引率
10.30%
发文量
336
审稿时长
41 days
期刊介绍: The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信