Luís Flávio Pereira , Elpídio Inácio Fernandes-Filho , Lucas Carvalho Gomes , Daniel Meira Arruda , Guilherme Castro Oliveira , Carlos Ernesto Gonçalves Reynald Schaefer , José João Lelis Leal de Souza , Márcio Rocha Francelino
{"title":"土壤和植被类型是控制绿度变化的先决因素:绿化和褐化建模模式的转变?","authors":"Luís Flávio Pereira , Elpídio Inácio Fernandes-Filho , Lucas Carvalho Gomes , Daniel Meira Arruda , Guilherme Castro Oliveira , Carlos Ernesto Gonçalves Reynald Schaefer , José João Lelis Leal de Souza , Márcio Rocha Francelino","doi":"10.1016/j.rsase.2024.101366","DOIUrl":null,"url":null,"abstract":"<div><div>Increases (greening) and losses (browning) of vegetation greenness related to climatic and anthropic changes are processes well documented in the literature. However, the control exerted by predisposition factors on the response of vegetation to these changes has been little studied, and appears to be especially important in anthropized regions. The present study aimed to map greening and browning processes, as well as to characterize and analyze their distribution in heavily anthropized regions regarding two main predisposition factors: soil and vegetation types. The Brazilian Semiarid region was used as a model area, using two novel approaches: a readily reproducible cloud computing approach to map consistent greening and browning processes, and a disaggregation approach in homogeneous units of vegetation, soil and land use types. The results showed that stable greenness dominates (66.8%), but browning is more frequent (29.1%) and intense than greening (4.1%), and may be related to desertification processes in native and anthropized areas. The distribution of greening and browning processes is zonal and heterogeneous. Environmental predisposition factors, mainly the water supply capacity, regionally control the distribution of greening and browning zones. Human-environment interplays locally regulate the intensity and distribution of the processes. We defend the need of a paradigm shift in greening and browning modelling. Further studies should consider the simultaneous and balanced use of predictors related to both predisposition and changes. The need for advances in the interpretability of these models is also evident, given that current approaches fail to elucidate the regulating mechanisms of greening and browning processes.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101366"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil and vegetation types are predisposition factors controlling greenness changes: A shift of paradigm in greening and browning modelling?\",\"authors\":\"Luís Flávio Pereira , Elpídio Inácio Fernandes-Filho , Lucas Carvalho Gomes , Daniel Meira Arruda , Guilherme Castro Oliveira , Carlos Ernesto Gonçalves Reynald Schaefer , José João Lelis Leal de Souza , Márcio Rocha Francelino\",\"doi\":\"10.1016/j.rsase.2024.101366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Increases (greening) and losses (browning) of vegetation greenness related to climatic and anthropic changes are processes well documented in the literature. However, the control exerted by predisposition factors on the response of vegetation to these changes has been little studied, and appears to be especially important in anthropized regions. The present study aimed to map greening and browning processes, as well as to characterize and analyze their distribution in heavily anthropized regions regarding two main predisposition factors: soil and vegetation types. The Brazilian Semiarid region was used as a model area, using two novel approaches: a readily reproducible cloud computing approach to map consistent greening and browning processes, and a disaggregation approach in homogeneous units of vegetation, soil and land use types. The results showed that stable greenness dominates (66.8%), but browning is more frequent (29.1%) and intense than greening (4.1%), and may be related to desertification processes in native and anthropized areas. The distribution of greening and browning processes is zonal and heterogeneous. Environmental predisposition factors, mainly the water supply capacity, regionally control the distribution of greening and browning zones. Human-environment interplays locally regulate the intensity and distribution of the processes. We defend the need of a paradigm shift in greening and browning modelling. Further studies should consider the simultaneous and balanced use of predictors related to both predisposition and changes. The need for advances in the interpretability of these models is also evident, given that current approaches fail to elucidate the regulating mechanisms of greening and browning processes.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"36 \",\"pages\":\"Article 101366\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Soil and vegetation types are predisposition factors controlling greenness changes: A shift of paradigm in greening and browning modelling?
Increases (greening) and losses (browning) of vegetation greenness related to climatic and anthropic changes are processes well documented in the literature. However, the control exerted by predisposition factors on the response of vegetation to these changes has been little studied, and appears to be especially important in anthropized regions. The present study aimed to map greening and browning processes, as well as to characterize and analyze their distribution in heavily anthropized regions regarding two main predisposition factors: soil and vegetation types. The Brazilian Semiarid region was used as a model area, using two novel approaches: a readily reproducible cloud computing approach to map consistent greening and browning processes, and a disaggregation approach in homogeneous units of vegetation, soil and land use types. The results showed that stable greenness dominates (66.8%), but browning is more frequent (29.1%) and intense than greening (4.1%), and may be related to desertification processes in native and anthropized areas. The distribution of greening and browning processes is zonal and heterogeneous. Environmental predisposition factors, mainly the water supply capacity, regionally control the distribution of greening and browning zones. Human-environment interplays locally regulate the intensity and distribution of the processes. We defend the need of a paradigm shift in greening and browning modelling. Further studies should consider the simultaneous and balanced use of predictors related to both predisposition and changes. The need for advances in the interpretability of these models is also evident, given that current approaches fail to elucidate the regulating mechanisms of greening and browning processes.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems