{"title":"V-Zn 系统中的相变和 Kirkendall 空洞的增长","authors":"Shubhangini Yadav, Varun A. Baheti","doi":"10.1016/j.scriptamat.2024.116391","DOIUrl":null,"url":null,"abstract":"<div><div>The V-Zn phase diagram became available after 1990. The existence of the VZn<sub>16</sub> phase has been questioned mainly. A solid–state diffusion experiment is conducted to reinvestigate the stability of phases. The interdiffusion zone is examined using scanning electron microscopy and energy dispersive spectroscopy. Our analysis confirms that VZn<sub>16</sub> is one of the stable phases. Additionally, the growth of the VZn<sub>9</sub> product phase is observed in the V/Zn diffusion couple, indicating that this newly discovered phase is also stable. Furthermore, the formation of the Kirkendall voids is observed in the VZn<sub>3</sub> phase, which can affect the physico–mechanical reliability of any component during load-bearing application. Moreover, this study's findings could also be beneficial for the ongoing efforts of designing promising Zn–based biomaterials.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"255 ","pages":"Article 116391"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase evolutions and the growth of Kirkendall voids in the V–Zn system\",\"authors\":\"Shubhangini Yadav, Varun A. Baheti\",\"doi\":\"10.1016/j.scriptamat.2024.116391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The V-Zn phase diagram became available after 1990. The existence of the VZn<sub>16</sub> phase has been questioned mainly. A solid–state diffusion experiment is conducted to reinvestigate the stability of phases. The interdiffusion zone is examined using scanning electron microscopy and energy dispersive spectroscopy. Our analysis confirms that VZn<sub>16</sub> is one of the stable phases. Additionally, the growth of the VZn<sub>9</sub> product phase is observed in the V/Zn diffusion couple, indicating that this newly discovered phase is also stable. Furthermore, the formation of the Kirkendall voids is observed in the VZn<sub>3</sub> phase, which can affect the physico–mechanical reliability of any component during load-bearing application. Moreover, this study's findings could also be beneficial for the ongoing efforts of designing promising Zn–based biomaterials.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"255 \",\"pages\":\"Article 116391\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646224004263\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224004263","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Phase evolutions and the growth of Kirkendall voids in the V–Zn system
The V-Zn phase diagram became available after 1990. The existence of the VZn16 phase has been questioned mainly. A solid–state diffusion experiment is conducted to reinvestigate the stability of phases. The interdiffusion zone is examined using scanning electron microscopy and energy dispersive spectroscopy. Our analysis confirms that VZn16 is one of the stable phases. Additionally, the growth of the VZn9 product phase is observed in the V/Zn diffusion couple, indicating that this newly discovered phase is also stable. Furthermore, the formation of the Kirkendall voids is observed in the VZn3 phase, which can affect the physico–mechanical reliability of any component during load-bearing application. Moreover, this study's findings could also be beneficial for the ongoing efforts of designing promising Zn–based biomaterials.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.