利用结构化涡流束以飞秒激光直接写入互补太赫兹元表面

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jijil J.J. Nivas , Gian Paolo Papari , Meilin Hu , Achu Purushothaman , Zahra Mazaheri , Salvatore Amoruso , Antonello Andreone
{"title":"利用结构化涡流束以飞秒激光直接写入互补太赫兹元表面","authors":"Jijil J.J. Nivas ,&nbsp;Gian Paolo Papari ,&nbsp;Meilin Hu ,&nbsp;Achu Purushothaman ,&nbsp;Zahra Mazaheri ,&nbsp;Salvatore Amoruso ,&nbsp;Antonello Andreone","doi":"10.1016/j.optlastec.2024.111831","DOIUrl":null,"url":null,"abstract":"<div><div>Metasurfaces, which are increasingly popular for creating ultra-thin optical components, offer a way to reduce the bulkiness of traditional optics, especially in the THz band. Typically, metasurfaces are fabricated using lithographic techniques in clean rooms, but a simpler fabrication method could expand their applicability. In this study, we present a femtosecond laser-based direct fabrication of complementary metasurfaces, highlighting the benefits of a single-step, mask-free process using structured light beams. A q-plate is used to generate an annular vortex beam with femtosecond duration, which is further tailored to imprint individual meta-atoms by perforating an Au film deposited on a Si substrate through laser ablation. This technique enables the creation of various metasurfaces designed for THz operation, as verified by full-wave simulations, featuring distinct shapes and periodicities for efficient electromagnetic radiation delivery. The fabricated devices are experimentally tested using time-domain spectroscopy, confirming the expected transmission properties and demonstrating the reliability and versatility of the proposed approach.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Femtosecond laser direct writing of complementary THz metasurfaces using a structured vortex beam\",\"authors\":\"Jijil J.J. Nivas ,&nbsp;Gian Paolo Papari ,&nbsp;Meilin Hu ,&nbsp;Achu Purushothaman ,&nbsp;Zahra Mazaheri ,&nbsp;Salvatore Amoruso ,&nbsp;Antonello Andreone\",\"doi\":\"10.1016/j.optlastec.2024.111831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metasurfaces, which are increasingly popular for creating ultra-thin optical components, offer a way to reduce the bulkiness of traditional optics, especially in the THz band. Typically, metasurfaces are fabricated using lithographic techniques in clean rooms, but a simpler fabrication method could expand their applicability. In this study, we present a femtosecond laser-based direct fabrication of complementary metasurfaces, highlighting the benefits of a single-step, mask-free process using structured light beams. A q-plate is used to generate an annular vortex beam with femtosecond duration, which is further tailored to imprint individual meta-atoms by perforating an Au film deposited on a Si substrate through laser ablation. This technique enables the creation of various metasurfaces designed for THz operation, as verified by full-wave simulations, featuring distinct shapes and periodicities for efficient electromagnetic radiation delivery. The fabricated devices are experimentally tested using time-domain spectroscopy, confirming the expected transmission properties and demonstrating the reliability and versatility of the proposed approach.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012891\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012891","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

元表面在制造超薄光学元件方面越来越受欢迎,它提供了一种减少传统光学元件体积的方法,尤其是在太赫兹波段。通常情况下,元表面是在无尘室中使用光刻技术制造的,但一种更简单的制造方法可以扩大其应用范围。在本研究中,我们介绍了一种基于飞秒激光的互补元表面直接制造方法,突出了使用结构光束的单步无掩膜工艺的优势。我们使用 Q 板产生飞秒持续时间的环形漩涡光束,通过激光烧蚀在硅基底上沉积的金膜穿孔,进一步调整该光束以印刻单个元原子。全波模拟验证了这一技术,它能制造出各种专为太赫兹工作而设计的元表面,这些元表面具有独特的形状和周期性,可实现高效的电磁辐射传输。利用时域光谱对制作的器件进行了实验测试,证实了预期的传输特性,并证明了所提议方法的可靠性和多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Femtosecond laser direct writing of complementary THz metasurfaces using a structured vortex beam

Femtosecond laser direct writing of complementary THz metasurfaces using a structured vortex beam
Metasurfaces, which are increasingly popular for creating ultra-thin optical components, offer a way to reduce the bulkiness of traditional optics, especially in the THz band. Typically, metasurfaces are fabricated using lithographic techniques in clean rooms, but a simpler fabrication method could expand their applicability. In this study, we present a femtosecond laser-based direct fabrication of complementary metasurfaces, highlighting the benefits of a single-step, mask-free process using structured light beams. A q-plate is used to generate an annular vortex beam with femtosecond duration, which is further tailored to imprint individual meta-atoms by perforating an Au film deposited on a Si substrate through laser ablation. This technique enables the creation of various metasurfaces designed for THz operation, as verified by full-wave simulations, featuring distinct shapes and periodicities for efficient electromagnetic radiation delivery. The fabricated devices are experimentally tested using time-domain spectroscopy, confirming the expected transmission properties and demonstrating the reliability and versatility of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信