Jijil J.J. Nivas , Gian Paolo Papari , Meilin Hu , Achu Purushothaman , Zahra Mazaheri , Salvatore Amoruso , Antonello Andreone
{"title":"利用结构化涡流束以飞秒激光直接写入互补太赫兹元表面","authors":"Jijil J.J. Nivas , Gian Paolo Papari , Meilin Hu , Achu Purushothaman , Zahra Mazaheri , Salvatore Amoruso , Antonello Andreone","doi":"10.1016/j.optlastec.2024.111831","DOIUrl":null,"url":null,"abstract":"<div><div>Metasurfaces, which are increasingly popular for creating ultra-thin optical components, offer a way to reduce the bulkiness of traditional optics, especially in the THz band. Typically, metasurfaces are fabricated using lithographic techniques in clean rooms, but a simpler fabrication method could expand their applicability. In this study, we present a femtosecond laser-based direct fabrication of complementary metasurfaces, highlighting the benefits of a single-step, mask-free process using structured light beams. A q-plate is used to generate an annular vortex beam with femtosecond duration, which is further tailored to imprint individual meta-atoms by perforating an Au film deposited on a Si substrate through laser ablation. This technique enables the creation of various metasurfaces designed for THz operation, as verified by full-wave simulations, featuring distinct shapes and periodicities for efficient electromagnetic radiation delivery. The fabricated devices are experimentally tested using time-domain spectroscopy, confirming the expected transmission properties and demonstrating the reliability and versatility of the proposed approach.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Femtosecond laser direct writing of complementary THz metasurfaces using a structured vortex beam\",\"authors\":\"Jijil J.J. Nivas , Gian Paolo Papari , Meilin Hu , Achu Purushothaman , Zahra Mazaheri , Salvatore Amoruso , Antonello Andreone\",\"doi\":\"10.1016/j.optlastec.2024.111831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metasurfaces, which are increasingly popular for creating ultra-thin optical components, offer a way to reduce the bulkiness of traditional optics, especially in the THz band. Typically, metasurfaces are fabricated using lithographic techniques in clean rooms, but a simpler fabrication method could expand their applicability. In this study, we present a femtosecond laser-based direct fabrication of complementary metasurfaces, highlighting the benefits of a single-step, mask-free process using structured light beams. A q-plate is used to generate an annular vortex beam with femtosecond duration, which is further tailored to imprint individual meta-atoms by perforating an Au film deposited on a Si substrate through laser ablation. This technique enables the creation of various metasurfaces designed for THz operation, as verified by full-wave simulations, featuring distinct shapes and periodicities for efficient electromagnetic radiation delivery. The fabricated devices are experimentally tested using time-domain spectroscopy, confirming the expected transmission properties and demonstrating the reliability and versatility of the proposed approach.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012891\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012891","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Femtosecond laser direct writing of complementary THz metasurfaces using a structured vortex beam
Metasurfaces, which are increasingly popular for creating ultra-thin optical components, offer a way to reduce the bulkiness of traditional optics, especially in the THz band. Typically, metasurfaces are fabricated using lithographic techniques in clean rooms, but a simpler fabrication method could expand their applicability. In this study, we present a femtosecond laser-based direct fabrication of complementary metasurfaces, highlighting the benefits of a single-step, mask-free process using structured light beams. A q-plate is used to generate an annular vortex beam with femtosecond duration, which is further tailored to imprint individual meta-atoms by perforating an Au film deposited on a Si substrate through laser ablation. This technique enables the creation of various metasurfaces designed for THz operation, as verified by full-wave simulations, featuring distinct shapes and periodicities for efficient electromagnetic radiation delivery. The fabricated devices are experimentally tested using time-domain spectroscopy, confirming the expected transmission properties and demonstrating the reliability and versatility of the proposed approach.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.