C. Wade Ross , E. Louise Loudermilk , Joseph J. O'Brien , Grant Snitker
{"title":"四个实验林的激光雷达结构复杂性数据","authors":"C. Wade Ross , E. Louise Loudermilk , Joseph J. O'Brien , Grant Snitker","doi":"10.1016/j.dib.2024.110955","DOIUrl":null,"url":null,"abstract":"<div><div>Structural complexity refers to the three-dimensional arrangement and variability of both biotic and abiotic components of an ecosystem. Metrics that characterize structural complexity are often used to manage various aspects of ecosystem function, such as light transmittance, wildlife habitat, and biological diversity. Additionally, these metrics aid in evaluating resilience to disturbance events, including hurricanes, bark-beetle outbreaks, and wildfire. Recent advances in wildland fire modelling have facilitated the integration of forest structural complexity metrics into the QUIC-Fire model, enabling real-time prediction of fire spread and behaviour by simulating interactions between fire, weather, topography, and forest structure. While QUIC-Fire is designed to be highly adaptable, model performance depends on the availability and accuracy of local data inputs. Expanding the model's usability across different regions can be facilitated by the availability of more comprehensive and high-quality data. Thus, the primary goal behind the data products we developed was to establish a basis for collaborative research across various disciplines, particularly within the focal areas of the Southern Research Station, such as forestry, wildland fire, hydrology, soil science, and cultural resources at Bent Creek, Coweeta, Escambia, and Hitchiti Experimental Forests (EFs).</div><div>Airborne laser scanning (ALS) was used to collect point-cloud data for each EF during the leaf-off season to minimize interference from foliage. Subsequent processing of the raw lidar data involved outlier detection and filtering, ground and non-ground classification, and the computation of a variety of metrics representing various aspects of topography and forest structure at both the pixel-level and the tree-level. Pixel-level topographic data products include: digital elevation model (DEM), slope, aspect, topographic position index (TPI), topographic roughness index (TRI), roughness, and flow direction. Forest structural-complexity metrics include canopy height, foliar height diversity (FHD), vertical distribution ratio (VDR), canopy rugosity, crown relief ratio (CRR), understory complexity index (UCI), vertical complexity index (VCI), canopy cover, mean vegetation height, and the standard deviation of vegetation height. Tree-level data products were computed from the point cloud using multiple algorithms to perform individual tree detection (ITD) and individual tree segmentation (ITS). The datasets have been harmonized and are openly accessible through the USDA Forest Service Research Data Archive.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lidar-derived structural-complexity data across four experimental forests\",\"authors\":\"C. Wade Ross , E. Louise Loudermilk , Joseph J. O'Brien , Grant Snitker\",\"doi\":\"10.1016/j.dib.2024.110955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Structural complexity refers to the three-dimensional arrangement and variability of both biotic and abiotic components of an ecosystem. Metrics that characterize structural complexity are often used to manage various aspects of ecosystem function, such as light transmittance, wildlife habitat, and biological diversity. Additionally, these metrics aid in evaluating resilience to disturbance events, including hurricanes, bark-beetle outbreaks, and wildfire. Recent advances in wildland fire modelling have facilitated the integration of forest structural complexity metrics into the QUIC-Fire model, enabling real-time prediction of fire spread and behaviour by simulating interactions between fire, weather, topography, and forest structure. While QUIC-Fire is designed to be highly adaptable, model performance depends on the availability and accuracy of local data inputs. Expanding the model's usability across different regions can be facilitated by the availability of more comprehensive and high-quality data. Thus, the primary goal behind the data products we developed was to establish a basis for collaborative research across various disciplines, particularly within the focal areas of the Southern Research Station, such as forestry, wildland fire, hydrology, soil science, and cultural resources at Bent Creek, Coweeta, Escambia, and Hitchiti Experimental Forests (EFs).</div><div>Airborne laser scanning (ALS) was used to collect point-cloud data for each EF during the leaf-off season to minimize interference from foliage. Subsequent processing of the raw lidar data involved outlier detection and filtering, ground and non-ground classification, and the computation of a variety of metrics representing various aspects of topography and forest structure at both the pixel-level and the tree-level. Pixel-level topographic data products include: digital elevation model (DEM), slope, aspect, topographic position index (TPI), topographic roughness index (TRI), roughness, and flow direction. Forest structural-complexity metrics include canopy height, foliar height diversity (FHD), vertical distribution ratio (VDR), canopy rugosity, crown relief ratio (CRR), understory complexity index (UCI), vertical complexity index (VCI), canopy cover, mean vegetation height, and the standard deviation of vegetation height. Tree-level data products were computed from the point cloud using multiple algorithms to perform individual tree detection (ITD) and individual tree segmentation (ITS). The datasets have been harmonized and are openly accessible through the USDA Forest Service Research Data Archive.</div></div>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235234092400917X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235234092400917X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Lidar-derived structural-complexity data across four experimental forests
Structural complexity refers to the three-dimensional arrangement and variability of both biotic and abiotic components of an ecosystem. Metrics that characterize structural complexity are often used to manage various aspects of ecosystem function, such as light transmittance, wildlife habitat, and biological diversity. Additionally, these metrics aid in evaluating resilience to disturbance events, including hurricanes, bark-beetle outbreaks, and wildfire. Recent advances in wildland fire modelling have facilitated the integration of forest structural complexity metrics into the QUIC-Fire model, enabling real-time prediction of fire spread and behaviour by simulating interactions between fire, weather, topography, and forest structure. While QUIC-Fire is designed to be highly adaptable, model performance depends on the availability and accuracy of local data inputs. Expanding the model's usability across different regions can be facilitated by the availability of more comprehensive and high-quality data. Thus, the primary goal behind the data products we developed was to establish a basis for collaborative research across various disciplines, particularly within the focal areas of the Southern Research Station, such as forestry, wildland fire, hydrology, soil science, and cultural resources at Bent Creek, Coweeta, Escambia, and Hitchiti Experimental Forests (EFs).
Airborne laser scanning (ALS) was used to collect point-cloud data for each EF during the leaf-off season to minimize interference from foliage. Subsequent processing of the raw lidar data involved outlier detection and filtering, ground and non-ground classification, and the computation of a variety of metrics representing various aspects of topography and forest structure at both the pixel-level and the tree-level. Pixel-level topographic data products include: digital elevation model (DEM), slope, aspect, topographic position index (TPI), topographic roughness index (TRI), roughness, and flow direction. Forest structural-complexity metrics include canopy height, foliar height diversity (FHD), vertical distribution ratio (VDR), canopy rugosity, crown relief ratio (CRR), understory complexity index (UCI), vertical complexity index (VCI), canopy cover, mean vegetation height, and the standard deviation of vegetation height. Tree-level data products were computed from the point cloud using multiple algorithms to perform individual tree detection (ITD) and individual tree segmentation (ITS). The datasets have been harmonized and are openly accessible through the USDA Forest Service Research Data Archive.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.