{"title":"金属寿命预测多轴低循环疲劳标准综述","authors":"Lorenzo Pagliari, Franco Concli","doi":"10.1177/10567895241280788","DOIUrl":null,"url":null,"abstract":"Most of real-world structural components that undergo cyclic loading feature multiaxial fatigue. When the cyclic loading involves also significant plastic deformation, multiaxial low-cycle fatigue takes place. Applications where multiaxial low-cycle fatigue can be observed very often involve metal components. To predict their lives multiple criteria and models have been proposed, but their development has not followed a regular path. Multiple reviews are available in literature. However, many of them are outdated, they often employ different classification methods to categorize available criteria, many focus on specific families of criteria, and others do not include sufficient theoretical background. Moreover, none of the available reviews is based on a systematic literature search method. As a result, approaching the topic can result arduous and chaotic, especially for first timers. This work aims at providing a clear, comprehensive, and definitive review of available criteria for multiaxial low-cycle fatigue. First, the basic theoretical background is explained. Secondly, a systematic approach is described and employed to identify all major currently available criteria. Then, they are classified and commentary about different classification styles that can be found in literature is added. Eventually they are described, together with their latest proposed variations. In this way this review can be employed as a guiding reference, especially for engineers approaching the topic for the first time.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"216 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of multiaxial low-cycle fatigue criteria for life prediction of metals\",\"authors\":\"Lorenzo Pagliari, Franco Concli\",\"doi\":\"10.1177/10567895241280788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of real-world structural components that undergo cyclic loading feature multiaxial fatigue. When the cyclic loading involves also significant plastic deformation, multiaxial low-cycle fatigue takes place. Applications where multiaxial low-cycle fatigue can be observed very often involve metal components. To predict their lives multiple criteria and models have been proposed, but their development has not followed a regular path. Multiple reviews are available in literature. However, many of them are outdated, they often employ different classification methods to categorize available criteria, many focus on specific families of criteria, and others do not include sufficient theoretical background. Moreover, none of the available reviews is based on a systematic literature search method. As a result, approaching the topic can result arduous and chaotic, especially for first timers. This work aims at providing a clear, comprehensive, and definitive review of available criteria for multiaxial low-cycle fatigue. First, the basic theoretical background is explained. Secondly, a systematic approach is described and employed to identify all major currently available criteria. Then, they are classified and commentary about different classification styles that can be found in literature is added. Eventually they are described, together with their latest proposed variations. In this way this review can be employed as a guiding reference, especially for engineers approaching the topic for the first time.\",\"PeriodicalId\":13837,\"journal\":{\"name\":\"International Journal of Damage Mechanics\",\"volume\":\"216 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Damage Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10567895241280788\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895241280788","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A review of multiaxial low-cycle fatigue criteria for life prediction of metals
Most of real-world structural components that undergo cyclic loading feature multiaxial fatigue. When the cyclic loading involves also significant plastic deformation, multiaxial low-cycle fatigue takes place. Applications where multiaxial low-cycle fatigue can be observed very often involve metal components. To predict their lives multiple criteria and models have been proposed, but their development has not followed a regular path. Multiple reviews are available in literature. However, many of them are outdated, they often employ different classification methods to categorize available criteria, many focus on specific families of criteria, and others do not include sufficient theoretical background. Moreover, none of the available reviews is based on a systematic literature search method. As a result, approaching the topic can result arduous and chaotic, especially for first timers. This work aims at providing a clear, comprehensive, and definitive review of available criteria for multiaxial low-cycle fatigue. First, the basic theoretical background is explained. Secondly, a systematic approach is described and employed to identify all major currently available criteria. Then, they are classified and commentary about different classification styles that can be found in literature is added. Eventually they are described, together with their latest proposed variations. In this way this review can be employed as a guiding reference, especially for engineers approaching the topic for the first time.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).