通过稀土调制多相磷/硫化物异质界面,在工业级电流密度下实现太阳能增强型水分离

Yikun Cheng, Pengjie Fu, Zhipeng Yu, Xiaodong Yang, Yangrui Zhang, Aojie Yuan, Huan Liu, Jianhao Du, Long Chen
{"title":"通过稀土调制多相磷/硫化物异质界面,在工业级电流密度下实现太阳能增强型水分离","authors":"Yikun Cheng,&nbsp;Pengjie Fu,&nbsp;Zhipeng Yu,&nbsp;Xiaodong Yang,&nbsp;Yangrui Zhang,&nbsp;Aojie Yuan,&nbsp;Huan Liu,&nbsp;Jianhao Du,&nbsp;Long Chen","doi":"10.1002/cnl2.157","DOIUrl":null,"url":null,"abstract":"<p>Photoelectrically coupling water splitting at high current density is a promising approach for the acquisition of green hydrogen energy. However, it places significant demands on the photo/electrocatalysts. Herein, rare earth elements doping NiMoO<sub>4</sub>-based phosphorus/sulfide heterostructure nanorod arrays (RE-NiMo-PS@NF [RE = Y, Er, La, and Sc]) are obtained for solar-enhanced electrocatalytic water splitting at high current densities. The results of the experiment and density-functional theory studies illustrate that the Y element as a dopant not only makes the NiMoP<sub>2</sub>/NiMo<sub>3</sub>S<sub>4</sub>/NiMoO<sub>4</sub> heterostructure exhibit excellent solar-enhanced electrocatalytic activity (hydrogen evolution reaction [HER]: <i>η</i><sub>1000</sub> = 211 mV, oxygen evolution reaction [OER]: <i>η</i><sub>1000</sub> = 367 mV) but also optimizes the heterostructure interfacial electron density distributions and HER free energy. In addition, Y-NiMo-PS@NF achieves 18.64% solar-to-hydrogen efficiency. This study not only provides a new way to synthesize heterostructure electrocatalysts but also inspires the application of solar enhancement strategies for high current density water splitting.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 5","pages":"873-887"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.157","citationCount":"0","resultStr":"{\"title\":\"Modulation of the multiphase phosphorus/sulfide heterogeneous interface via rare earth for solar-enhanced water splitting at industrial-level current densities\",\"authors\":\"Yikun Cheng,&nbsp;Pengjie Fu,&nbsp;Zhipeng Yu,&nbsp;Xiaodong Yang,&nbsp;Yangrui Zhang,&nbsp;Aojie Yuan,&nbsp;Huan Liu,&nbsp;Jianhao Du,&nbsp;Long Chen\",\"doi\":\"10.1002/cnl2.157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photoelectrically coupling water splitting at high current density is a promising approach for the acquisition of green hydrogen energy. However, it places significant demands on the photo/electrocatalysts. Herein, rare earth elements doping NiMoO<sub>4</sub>-based phosphorus/sulfide heterostructure nanorod arrays (RE-NiMo-PS@NF [RE = Y, Er, La, and Sc]) are obtained for solar-enhanced electrocatalytic water splitting at high current densities. The results of the experiment and density-functional theory studies illustrate that the Y element as a dopant not only makes the NiMoP<sub>2</sub>/NiMo<sub>3</sub>S<sub>4</sub>/NiMoO<sub>4</sub> heterostructure exhibit excellent solar-enhanced electrocatalytic activity (hydrogen evolution reaction [HER]: <i>η</i><sub>1000</sub> = 211 mV, oxygen evolution reaction [OER]: <i>η</i><sub>1000</sub> = 367 mV) but also optimizes the heterostructure interfacial electron density distributions and HER free energy. In addition, Y-NiMo-PS@NF achieves 18.64% solar-to-hydrogen efficiency. This study not only provides a new way to synthesize heterostructure electrocatalysts but also inspires the application of solar enhancement strategies for high current density water splitting.</p>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":\"3 5\",\"pages\":\"873-887\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.157\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在高电流密度下进行光电耦合水分裂是获得绿色氢能的一种前景广阔的方法。然而,这对光电催化剂提出了很高的要求。本文研究了掺杂稀土元素的基于 NiMoO4 的磷/硫化物异质结构纳米棒阵列(RE-NiMo-PS@NF [RE = Y、Er、La 和 Sc]),用于在高电流密度下进行太阳能增强电催化水分离。实验和密度泛函理论研究结果表明,Y 元素作为掺杂剂不仅使 NiMoP2/NiMo3S4/NiMoO4 异质结构表现出优异的太阳能增强电催化活性(氢进化反应 [HER]:η1000 = 211 mV,氧进化反应 [OER]:η1000 = 367 mV),而且优化了异质结构界面电子密度分布和氢进化反应自由能。此外,Y-NiMo-PS@NF 还实现了 18.64% 的太阳能制氢效率。这项研究不仅为合成异质结构电催化剂提供了一种新方法,而且还为应用太阳能增强策略实现高电流密度水分离提供了灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modulation of the multiphase phosphorus/sulfide heterogeneous interface via rare earth for solar-enhanced water splitting at industrial-level current densities

Modulation of the multiphase phosphorus/sulfide heterogeneous interface via rare earth for solar-enhanced water splitting at industrial-level current densities

Photoelectrically coupling water splitting at high current density is a promising approach for the acquisition of green hydrogen energy. However, it places significant demands on the photo/electrocatalysts. Herein, rare earth elements doping NiMoO4-based phosphorus/sulfide heterostructure nanorod arrays (RE-NiMo-PS@NF [RE = Y, Er, La, and Sc]) are obtained for solar-enhanced electrocatalytic water splitting at high current densities. The results of the experiment and density-functional theory studies illustrate that the Y element as a dopant not only makes the NiMoP2/NiMo3S4/NiMoO4 heterostructure exhibit excellent solar-enhanced electrocatalytic activity (hydrogen evolution reaction [HER]: η1000 = 211 mV, oxygen evolution reaction [OER]: η1000 = 367 mV) but also optimizes the heterostructure interfacial electron density distributions and HER free energy. In addition, Y-NiMo-PS@NF achieves 18.64% solar-to-hydrogen efficiency. This study not only provides a new way to synthesize heterostructure electrocatalysts but also inspires the application of solar enhancement strategies for high current density water splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信