为缺失模式下的三维脑肿瘤分段调整分段任何模型

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaoliang Lei, Xiaosheng Yu, Maocheng Bai, Jingsi Zhang, Chengdong Wu
{"title":"为缺失模式下的三维脑肿瘤分段调整分段任何模型","authors":"Xiaoliang Lei,&nbsp;Xiaosheng Yu,&nbsp;Maocheng Bai,&nbsp;Jingsi Zhang,&nbsp;Chengdong Wu","doi":"10.1002/ima.23177","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The problem of missing or unavailable magnetic resonance imaging modalities challenges clinical diagnosis and medical image analysis technology. Although the development of deep learning and the proposal of large models have improved medical analytics, this problem still needs to be better resolved.The purpose of this study was to efficiently adapt the Segment Anything Model, a two-dimensional visual foundation model trained on natural images, to address the challenge of brain tumor segmentation with missing modalities. We designed a twin network structure that processes missing and intact magnetic resonance imaging (MRI) modalities separately using shared parameters. It involved comparing the features of two network branches to minimize differences between the feature maps derived from them. We added a multimodal adapter before the image encoder and a spatial–depth adapter before the mask decoder to fine-tune the Segment Anything Model for brain tumor segmentation. The proposed method was evaluated using datasets provided by the MICCAI BraTS2021 Challenge. In terms of accuracy and robustness, the proposed method is better than existing solutions. The proposed method can segment brain tumors well under the missing modality condition.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adapting Segment Anything Model for 3D Brain Tumor Segmentation With Missing Modalities\",\"authors\":\"Xiaoliang Lei,&nbsp;Xiaosheng Yu,&nbsp;Maocheng Bai,&nbsp;Jingsi Zhang,&nbsp;Chengdong Wu\",\"doi\":\"10.1002/ima.23177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The problem of missing or unavailable magnetic resonance imaging modalities challenges clinical diagnosis and medical image analysis technology. Although the development of deep learning and the proposal of large models have improved medical analytics, this problem still needs to be better resolved.The purpose of this study was to efficiently adapt the Segment Anything Model, a two-dimensional visual foundation model trained on natural images, to address the challenge of brain tumor segmentation with missing modalities. We designed a twin network structure that processes missing and intact magnetic resonance imaging (MRI) modalities separately using shared parameters. It involved comparing the features of two network branches to minimize differences between the feature maps derived from them. We added a multimodal adapter before the image encoder and a spatial–depth adapter before the mask decoder to fine-tune the Segment Anything Model for brain tumor segmentation. The proposed method was evaluated using datasets provided by the MICCAI BraTS2021 Challenge. In terms of accuracy and robustness, the proposed method is better than existing solutions. The proposed method can segment brain tumors well under the missing modality condition.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23177\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23177","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

磁共振成像模式缺失或不可用的问题给临床诊断和医学图像分析技术带来了挑战。虽然深度学习的发展和大型模型的提出改善了医学分析,但这一问题仍有待更好地解决。本研究的目的是对 Segment Anything Model(一种在自然图像上训练的二维视觉基础模型)进行有效调整,以解决缺失模式下的脑肿瘤分割难题。我们设计了一种孪生网络结构,利用共享参数分别处理缺失和完整的磁共振成像(MRI)模式。这涉及到比较两个网络分支的特征,以最大限度地减少从它们得出的特征图之间的差异。我们在图像编码器之前添加了一个多模态适配器,在掩膜解码器之前添加了一个空间深度适配器,以微调用于脑肿瘤分割的 "任意分割模型"。我们使用 MICCAI BraTS2021 挑战赛提供的数据集对所提出的方法进行了评估。在准确性和鲁棒性方面,所提出的方法优于现有的解决方案。在缺失模态条件下,所提出的方法能很好地分割脑肿瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adapting Segment Anything Model for 3D Brain Tumor Segmentation With Missing Modalities

The problem of missing or unavailable magnetic resonance imaging modalities challenges clinical diagnosis and medical image analysis technology. Although the development of deep learning and the proposal of large models have improved medical analytics, this problem still needs to be better resolved.The purpose of this study was to efficiently adapt the Segment Anything Model, a two-dimensional visual foundation model trained on natural images, to address the challenge of brain tumor segmentation with missing modalities. We designed a twin network structure that processes missing and intact magnetic resonance imaging (MRI) modalities separately using shared parameters. It involved comparing the features of two network branches to minimize differences between the feature maps derived from them. We added a multimodal adapter before the image encoder and a spatial–depth adapter before the mask decoder to fine-tune the Segment Anything Model for brain tumor segmentation. The proposed method was evaluated using datasets provided by the MICCAI BraTS2021 Challenge. In terms of accuracy and robustness, the proposed method is better than existing solutions. The proposed method can segment brain tumors well under the missing modality condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信