{"title":"为缺失模式下的三维脑肿瘤分段调整分段任何模型","authors":"Xiaoliang Lei, Xiaosheng Yu, Maocheng Bai, Jingsi Zhang, Chengdong Wu","doi":"10.1002/ima.23177","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The problem of missing or unavailable magnetic resonance imaging modalities challenges clinical diagnosis and medical image analysis technology. Although the development of deep learning and the proposal of large models have improved medical analytics, this problem still needs to be better resolved.The purpose of this study was to efficiently adapt the Segment Anything Model, a two-dimensional visual foundation model trained on natural images, to address the challenge of brain tumor segmentation with missing modalities. We designed a twin network structure that processes missing and intact magnetic resonance imaging (MRI) modalities separately using shared parameters. It involved comparing the features of two network branches to minimize differences between the feature maps derived from them. We added a multimodal adapter before the image encoder and a spatial–depth adapter before the mask decoder to fine-tune the Segment Anything Model for brain tumor segmentation. The proposed method was evaluated using datasets provided by the MICCAI BraTS2021 Challenge. In terms of accuracy and robustness, the proposed method is better than existing solutions. The proposed method can segment brain tumors well under the missing modality condition.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adapting Segment Anything Model for 3D Brain Tumor Segmentation With Missing Modalities\",\"authors\":\"Xiaoliang Lei, Xiaosheng Yu, Maocheng Bai, Jingsi Zhang, Chengdong Wu\",\"doi\":\"10.1002/ima.23177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The problem of missing or unavailable magnetic resonance imaging modalities challenges clinical diagnosis and medical image analysis technology. Although the development of deep learning and the proposal of large models have improved medical analytics, this problem still needs to be better resolved.The purpose of this study was to efficiently adapt the Segment Anything Model, a two-dimensional visual foundation model trained on natural images, to address the challenge of brain tumor segmentation with missing modalities. We designed a twin network structure that processes missing and intact magnetic resonance imaging (MRI) modalities separately using shared parameters. It involved comparing the features of two network branches to minimize differences between the feature maps derived from them. We added a multimodal adapter before the image encoder and a spatial–depth adapter before the mask decoder to fine-tune the Segment Anything Model for brain tumor segmentation. The proposed method was evaluated using datasets provided by the MICCAI BraTS2021 Challenge. In terms of accuracy and robustness, the proposed method is better than existing solutions. The proposed method can segment brain tumors well under the missing modality condition.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23177\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23177","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Adapting Segment Anything Model for 3D Brain Tumor Segmentation With Missing Modalities
The problem of missing or unavailable magnetic resonance imaging modalities challenges clinical diagnosis and medical image analysis technology. Although the development of deep learning and the proposal of large models have improved medical analytics, this problem still needs to be better resolved.The purpose of this study was to efficiently adapt the Segment Anything Model, a two-dimensional visual foundation model trained on natural images, to address the challenge of brain tumor segmentation with missing modalities. We designed a twin network structure that processes missing and intact magnetic resonance imaging (MRI) modalities separately using shared parameters. It involved comparing the features of two network branches to minimize differences between the feature maps derived from them. We added a multimodal adapter before the image encoder and a spatial–depth adapter before the mask decoder to fine-tune the Segment Anything Model for brain tumor segmentation. The proposed method was evaluated using datasets provided by the MICCAI BraTS2021 Challenge. In terms of accuracy and robustness, the proposed method is better than existing solutions. The proposed method can segment brain tumors well under the missing modality condition.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.