用于高性能氧化硅阳极的粘合剂诱导富无机固体电解质间相和物理化学双交联网络

Gang Wu, Yuanhang Gao, Zheng Weng, Zhicheng Zheng, Wenqiang Fan, Anqiang Pan, Ning Zhang, Xiaohe Liu, Renzhi Ma, Gen Chen
{"title":"用于高性能氧化硅阳极的粘合剂诱导富无机固体电解质间相和物理化学双交联网络","authors":"Gang Wu,&nbsp;Yuanhang Gao,&nbsp;Zheng Weng,&nbsp;Zhicheng Zheng,&nbsp;Wenqiang Fan,&nbsp;Anqiang Pan,&nbsp;Ning Zhang,&nbsp;Xiaohe Liu,&nbsp;Renzhi Ma,&nbsp;Gen Chen","doi":"10.1002/cnl2.158","DOIUrl":null,"url":null,"abstract":"<p>Silicon oxide (SiO<sub><i>x</i></sub>) is heralded as the forefront anode material for high-energy density lithium-ion batteries, owing to its exceptional specific capacity. Nevertheless, the traditional combination of polyacrylic acid binder and acetylene black conductive carbon continues to struggle with the immense stress induced by the repetitive volume expansion and contraction processes. Here we report a high ionic conductivity, sulfonyl fluoro-containing binder for SiO<sub><i>x</i></sub> anode via free radical copolymerization reaction between perfluoro (4-methyl-3,6-dioxaoct-7-ene) sulfonyl fluoride and acrylic acid. The electrode fabrication process incorporated amino-functionalized carbon nanotubes (CNT-NH<sub>2</sub>) as the conductive agent. A three-dimensional conductive network structure is constructed through physical and chemical double cross-linking interactions between the -COOH and -SO<sub>2</sub>F functional groups of PAF<sub>0.1</sub> binder, the -NH<sub>2</sub> groups of CNT-NH<sub>2</sub>, and the -OH groups on the surface of SiO<sub><i>x</i></sub>, including hydrogen bonds and covalent bonds. In addition, the binder induces the formation of a solid electrolyte interphase (SEI) rich in inorganic components such as Li<sub>2</sub>O, Li<sub>2</sub>SO<sub>3</sub>, Li<sub>2</sub>CO<sub>3</sub>, and LiF. Benefiting from the synergistic effects of the physically and chemically double cross-linked three-dimensional conductive network constructed by the PAF<sub>0.1</sub> binder and CNT-NH<sub>2</sub>, coupled with the rich-inorganic SEI, the SiO<sub><i>x</i></sub> anode delivers exceptional rate performance, cycle stability, and lithium-ion diffusion dynamics.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 5","pages":"857-872"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.158","citationCount":"0","resultStr":"{\"title\":\"Binder-induced inorganic-rich solid electrolyte interphase and physicochemical dual cross-linked network for high-performance SiOx anode\",\"authors\":\"Gang Wu,&nbsp;Yuanhang Gao,&nbsp;Zheng Weng,&nbsp;Zhicheng Zheng,&nbsp;Wenqiang Fan,&nbsp;Anqiang Pan,&nbsp;Ning Zhang,&nbsp;Xiaohe Liu,&nbsp;Renzhi Ma,&nbsp;Gen Chen\",\"doi\":\"10.1002/cnl2.158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicon oxide (SiO<sub><i>x</i></sub>) is heralded as the forefront anode material for high-energy density lithium-ion batteries, owing to its exceptional specific capacity. Nevertheless, the traditional combination of polyacrylic acid binder and acetylene black conductive carbon continues to struggle with the immense stress induced by the repetitive volume expansion and contraction processes. Here we report a high ionic conductivity, sulfonyl fluoro-containing binder for SiO<sub><i>x</i></sub> anode via free radical copolymerization reaction between perfluoro (4-methyl-3,6-dioxaoct-7-ene) sulfonyl fluoride and acrylic acid. The electrode fabrication process incorporated amino-functionalized carbon nanotubes (CNT-NH<sub>2</sub>) as the conductive agent. A three-dimensional conductive network structure is constructed through physical and chemical double cross-linking interactions between the -COOH and -SO<sub>2</sub>F functional groups of PAF<sub>0.1</sub> binder, the -NH<sub>2</sub> groups of CNT-NH<sub>2</sub>, and the -OH groups on the surface of SiO<sub><i>x</i></sub>, including hydrogen bonds and covalent bonds. In addition, the binder induces the formation of a solid electrolyte interphase (SEI) rich in inorganic components such as Li<sub>2</sub>O, Li<sub>2</sub>SO<sub>3</sub>, Li<sub>2</sub>CO<sub>3</sub>, and LiF. Benefiting from the synergistic effects of the physically and chemically double cross-linked three-dimensional conductive network constructed by the PAF<sub>0.1</sub> binder and CNT-NH<sub>2</sub>, coupled with the rich-inorganic SEI, the SiO<sub><i>x</i></sub> anode delivers exceptional rate performance, cycle stability, and lithium-ion diffusion dynamics.</p>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":\"3 5\",\"pages\":\"857-872\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.158\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氧化硅(SiOx)因其超强的比容量而被誉为高能量密度锂离子电池的前沿负极材料。然而,聚丙烯酸粘合剂和乙炔黑导电碳的传统组合仍然难以承受反复的体积膨胀和收缩过程所引起的巨大压力。在此,我们报告了通过全氟(4-甲基-3,6-二氧杂-7-辛烯)磺酰氟和丙烯酸之间的自由基共聚反应,为氧化硅阳极开发出的一种高离子电导率、含磺酰氟的粘结剂。电极制造过程采用了氨基功能化碳纳米管(CNT-NH2)作为导电剂。PAF0.1 粘合剂的 -COOH 和 -SO2F 官能团、CNT-NH2 的 -NH2 基团和 SiOx 表面的 -OH 基团之间通过物理和化学双交联作用(包括氢键和共价键)构建了三维导电网络结构。此外,粘合剂还能诱导形成富含 Li2O、Li2SO3、Li2CO3 和 LiF 等无机成分的固体电解质间相(SEI)。得益于 PAF0.1 粘合剂和 CNT-NH2 构建的物理和化学双交联三维导电网络以及丰富的无机 SEI 的协同效应,SiOx 阳极具有优异的速率性能、循环稳定性和锂离子扩散动力学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Binder-induced inorganic-rich solid electrolyte interphase and physicochemical dual cross-linked network for high-performance SiOx anode

Binder-induced inorganic-rich solid electrolyte interphase and physicochemical dual cross-linked network for high-performance SiOx anode

Silicon oxide (SiOx) is heralded as the forefront anode material for high-energy density lithium-ion batteries, owing to its exceptional specific capacity. Nevertheless, the traditional combination of polyacrylic acid binder and acetylene black conductive carbon continues to struggle with the immense stress induced by the repetitive volume expansion and contraction processes. Here we report a high ionic conductivity, sulfonyl fluoro-containing binder for SiOx anode via free radical copolymerization reaction between perfluoro (4-methyl-3,6-dioxaoct-7-ene) sulfonyl fluoride and acrylic acid. The electrode fabrication process incorporated amino-functionalized carbon nanotubes (CNT-NH2) as the conductive agent. A three-dimensional conductive network structure is constructed through physical and chemical double cross-linking interactions between the -COOH and -SO2F functional groups of PAF0.1 binder, the -NH2 groups of CNT-NH2, and the -OH groups on the surface of SiOx, including hydrogen bonds and covalent bonds. In addition, the binder induces the formation of a solid electrolyte interphase (SEI) rich in inorganic components such as Li2O, Li2SO3, Li2CO3, and LiF. Benefiting from the synergistic effects of the physically and chemically double cross-linked three-dimensional conductive network constructed by the PAF0.1 binder and CNT-NH2, coupled with the rich-inorganic SEI, the SiOx anode delivers exceptional rate performance, cycle stability, and lithium-ion diffusion dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信