{"title":"微分级数环的矿石局部化;迈向微分级数代数的戈尔迪定理","authors":"Alexander Zimmermann","doi":"10.1016/j.jalgebra.2024.08.032","DOIUrl":null,"url":null,"abstract":"<div><div>We study Ore localisation of differential graded algebras. Further we define dg-prime rings, dg-semiprime rings, and study the dg-nil radical of dg-rings. Then, we define dg-essential submodules, dg-uniform dimension, and apply all this to a dg-version of Goldie's theorem on prime dg-rings.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ore localisation for differential graded rings; towards Goldie's theorem for differential graded algebras\",\"authors\":\"Alexander Zimmermann\",\"doi\":\"10.1016/j.jalgebra.2024.08.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study Ore localisation of differential graded algebras. Further we define dg-prime rings, dg-semiprime rings, and study the dg-nil radical of dg-rings. Then, we define dg-essential submodules, dg-uniform dimension, and apply all this to a dg-version of Goldie's theorem on prime dg-rings.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324004988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ore localisation for differential graded rings; towards Goldie's theorem for differential graded algebras
We study Ore localisation of differential graded algebras. Further we define dg-prime rings, dg-semiprime rings, and study the dg-nil radical of dg-rings. Then, we define dg-essential submodules, dg-uniform dimension, and apply all this to a dg-version of Goldie's theorem on prime dg-rings.