M. Zmeškal , L. Thulliez , P. Tamagno , E. Dumonteil
{"title":"改进 Geant4 中子 HP 软件包:用概率表描述未解决的共振区域","authors":"M. Zmeškal , L. Thulliez , P. Tamagno , E. Dumonteil","doi":"10.1016/j.anucene.2024.110914","DOIUrl":null,"url":null,"abstract":"<div><div>Whether for shielding applications or for criticality safety studies, solving the neutron transport equation with good accuracy requires to take into account the resonant structure of cross sections in part of the Unresolved Resonance Region (URR). In this energy range even if the resonances can no longer be resolved experimentally, neglecting them can lead to significant numerical biases, namely in flux-based quantities. In Geant4, low energy neutrons are transported using evaluated nuclear data libraries handled by the Neutron High-Precision (Neutron-HP) package. In the version 11.01.p02 of the code, the URR can only be described by average smooth cross sections that do not take into account the statistical resonant structure of the cross sections. To overcome this shortcoming, the treatment of the URR with the use of the probability table method has been implemented in Geant4 and successfully validated with the reference Monte Carlo neutron transport codes MCNP6 (version 6.2) and Tripoli-4® (version 12). These developments will be taken into account in the next release of Geant4. All the validations of Geant4 have been performed with probability tables generated from both the NJOY and CALENDF pre-processing tools. Therefore Geant4 now has this unique feature to study the relative impact of the strategies involved during the production of probability table by the two pre-processing codes. This has been used to show that self-shielding is important also for inelastic cross sections in the example of <sup>238</sup>U. The tool to generate probability tables usable by Geant4 either from NJOY or from CALENDF is made available on a dedicated GitLab repository and will be included in Geant4.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of Geant4 Neutron-HP package: Unresolved resonance region description with probability tables\",\"authors\":\"M. Zmeškal , L. Thulliez , P. Tamagno , E. Dumonteil\",\"doi\":\"10.1016/j.anucene.2024.110914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Whether for shielding applications or for criticality safety studies, solving the neutron transport equation with good accuracy requires to take into account the resonant structure of cross sections in part of the Unresolved Resonance Region (URR). In this energy range even if the resonances can no longer be resolved experimentally, neglecting them can lead to significant numerical biases, namely in flux-based quantities. In Geant4, low energy neutrons are transported using evaluated nuclear data libraries handled by the Neutron High-Precision (Neutron-HP) package. In the version 11.01.p02 of the code, the URR can only be described by average smooth cross sections that do not take into account the statistical resonant structure of the cross sections. To overcome this shortcoming, the treatment of the URR with the use of the probability table method has been implemented in Geant4 and successfully validated with the reference Monte Carlo neutron transport codes MCNP6 (version 6.2) and Tripoli-4® (version 12). These developments will be taken into account in the next release of Geant4. All the validations of Geant4 have been performed with probability tables generated from both the NJOY and CALENDF pre-processing tools. Therefore Geant4 now has this unique feature to study the relative impact of the strategies involved during the production of probability table by the two pre-processing codes. This has been used to show that self-shielding is important also for inelastic cross sections in the example of <sup>238</sup>U. The tool to generate probability tables usable by Geant4 either from NJOY or from CALENDF is made available on a dedicated GitLab repository and will be included in Geant4.</div></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454924005772\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924005772","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Improvement of Geant4 Neutron-HP package: Unresolved resonance region description with probability tables
Whether for shielding applications or for criticality safety studies, solving the neutron transport equation with good accuracy requires to take into account the resonant structure of cross sections in part of the Unresolved Resonance Region (URR). In this energy range even if the resonances can no longer be resolved experimentally, neglecting them can lead to significant numerical biases, namely in flux-based quantities. In Geant4, low energy neutrons are transported using evaluated nuclear data libraries handled by the Neutron High-Precision (Neutron-HP) package. In the version 11.01.p02 of the code, the URR can only be described by average smooth cross sections that do not take into account the statistical resonant structure of the cross sections. To overcome this shortcoming, the treatment of the URR with the use of the probability table method has been implemented in Geant4 and successfully validated with the reference Monte Carlo neutron transport codes MCNP6 (version 6.2) and Tripoli-4® (version 12). These developments will be taken into account in the next release of Geant4. All the validations of Geant4 have been performed with probability tables generated from both the NJOY and CALENDF pre-processing tools. Therefore Geant4 now has this unique feature to study the relative impact of the strategies involved during the production of probability table by the two pre-processing codes. This has been used to show that self-shielding is important also for inelastic cross sections in the example of 238U. The tool to generate probability tables usable by Geant4 either from NJOY or from CALENDF is made available on a dedicated GitLab repository and will be included in Geant4.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.