窄矩形水道宽参数条件下核沸腾发生的实验研究

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Bo Kuang, Yu Zhao, Gang Wang, Chengque Cao, Pengfei Liu
{"title":"窄矩形水道宽参数条件下核沸腾发生的实验研究","authors":"Bo Kuang,&nbsp;Yu Zhao,&nbsp;Gang Wang,&nbsp;Chengque Cao,&nbsp;Pengfei Liu","doi":"10.1016/j.anucene.2024.110935","DOIUrl":null,"url":null,"abstract":"<div><div>The onset of nucleate boiling (ONB), which marks the emergence of nucleate boiling, is an important transition point in the boiling curve. For exploring the influence of geometric and thermodynamic parameters on ONB in rectangular narrow channels, a detailed experimental study is conducted to investigate ONB under wide range of parameters. The experimental parameters range is pressure of 0.1–5.5 MPa, mass flux of 200–2000 kg/m<sup>2</sup>s, inlet subcooling of 10–150 K. According to the experimental results, the location of ONB is identified based on the axial distribution of wall temperature, and the influence of various parameters on ONB in narrow rectangular channels is analyzed. It is found that heat flux, pressure, mass flux, and the gap size of the channel have a significant impact on ONB. By comparing the computed results of existing correlations, it is evident that there is a deviation, which can be attributed to the narrow range of experimental parameters in previous studies. Finally, a new ONB model is developed based on basic equations proposed by Hsu and the distribution of liquid temperature, taking into account the influence of mass flux and the enhanced heat transfer results from surrounding bubbles to correct the liquid temperature. The new correlation accurately describes the impact of each parameter and is in good agreement with the current experimental results.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on onset of nucleate boiling in wide-ranged parameters for narrow rectangular channels\",\"authors\":\"Bo Kuang,&nbsp;Yu Zhao,&nbsp;Gang Wang,&nbsp;Chengque Cao,&nbsp;Pengfei Liu\",\"doi\":\"10.1016/j.anucene.2024.110935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The onset of nucleate boiling (ONB), which marks the emergence of nucleate boiling, is an important transition point in the boiling curve. For exploring the influence of geometric and thermodynamic parameters on ONB in rectangular narrow channels, a detailed experimental study is conducted to investigate ONB under wide range of parameters. The experimental parameters range is pressure of 0.1–5.5 MPa, mass flux of 200–2000 kg/m<sup>2</sup>s, inlet subcooling of 10–150 K. According to the experimental results, the location of ONB is identified based on the axial distribution of wall temperature, and the influence of various parameters on ONB in narrow rectangular channels is analyzed. It is found that heat flux, pressure, mass flux, and the gap size of the channel have a significant impact on ONB. By comparing the computed results of existing correlations, it is evident that there is a deviation, which can be attributed to the narrow range of experimental parameters in previous studies. Finally, a new ONB model is developed based on basic equations proposed by Hsu and the distribution of liquid temperature, taking into account the influence of mass flux and the enhanced heat transfer results from surrounding bubbles to correct the liquid temperature. The new correlation accurately describes the impact of each parameter and is in good agreement with the current experimental results.</div></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030645492400598X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030645492400598X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

核沸腾起始点(ONB)标志着核沸腾的出现,是沸腾曲线中的一个重要转变点。为了探索几何参数和热力学参数对矩形窄通道中核沸点的影响,我们进行了详细的实验研究,以探讨宽参数范围下的核沸点。实验参数范围为压力 0.1-5.5 MPa、质量通量 200-2000 kg/m2s、入口过冷度 10-150 K。根据实验结果,基于壁温的轴向分布确定了ONB的位置,并分析了各种参数对矩形窄通道中ONB的影响。结果发现,热通量、压力、质量通量和通道间隙大小对 ONB 有显著影响。通过比较现有相关性的计算结果,可以明显看出存在偏差,这可归因于以往研究中实验参数范围较窄。最后,基于 Hsu 提出的基本方程和液体温度分布,并考虑到质量通量的影响和周围气泡的强化传热结果,建立了一个新的 ONB 模型,以校正液体温度。新的相关性准确地描述了每个参数的影响,并与当前的实验结果十分吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on onset of nucleate boiling in wide-ranged parameters for narrow rectangular channels
The onset of nucleate boiling (ONB), which marks the emergence of nucleate boiling, is an important transition point in the boiling curve. For exploring the influence of geometric and thermodynamic parameters on ONB in rectangular narrow channels, a detailed experimental study is conducted to investigate ONB under wide range of parameters. The experimental parameters range is pressure of 0.1–5.5 MPa, mass flux of 200–2000 kg/m2s, inlet subcooling of 10–150 K. According to the experimental results, the location of ONB is identified based on the axial distribution of wall temperature, and the influence of various parameters on ONB in narrow rectangular channels is analyzed. It is found that heat flux, pressure, mass flux, and the gap size of the channel have a significant impact on ONB. By comparing the computed results of existing correlations, it is evident that there is a deviation, which can be attributed to the narrow range of experimental parameters in previous studies. Finally, a new ONB model is developed based on basic equations proposed by Hsu and the distribution of liquid temperature, taking into account the influence of mass flux and the enhanced heat transfer results from surrounding bubbles to correct the liquid temperature. The new correlation accurately describes the impact of each parameter and is in good agreement with the current experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信