三角流形的全局刚性

IF 1.5 1区 数学 Q1 MATHEMATICS
James Cruickshank , Bill Jackson , Shin-ichi Tanigawa
{"title":"三角流形的全局刚性","authors":"James Cruickshank ,&nbsp;Bill Jackson ,&nbsp;Shin-ichi Tanigawa","doi":"10.1016/j.aim.2024.109953","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that if <em>G</em> is the graph of a connected triangulated <span><math><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-manifold, for <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>, then <em>G</em> is generically globally rigid in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> if and only if it is <span><math><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-connected and, if <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span>, <em>G</em> is not planar. The special case <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span> verifies a conjecture of Connelly. Our results actually apply to a much larger class of simplicial complexes, namely the circuits of the simplicial matroid. We also give two significant applications of our main theorems. We show that the characterisation of pseudomanifolds with extremal edge numbers given by the Lower Bound Theorem extends to circuits of the simplicial matroid. We also prove the generic case of a conjecture of Kalai concerning the reconstructability of a polytope from its space of stresses. The proofs of our main results adapt earlier ideas of Fogelsanger and Whiteley to the setting of global rigidity. In particular we verify a special case of Whiteley's vertex splitting conjecture for global rigidity.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109953"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global rigidity of triangulated manifolds\",\"authors\":\"James Cruickshank ,&nbsp;Bill Jackson ,&nbsp;Shin-ichi Tanigawa\",\"doi\":\"10.1016/j.aim.2024.109953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that if <em>G</em> is the graph of a connected triangulated <span><math><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-manifold, for <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>, then <em>G</em> is generically globally rigid in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> if and only if it is <span><math><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-connected and, if <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span>, <em>G</em> is not planar. The special case <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span> verifies a conjecture of Connelly. Our results actually apply to a much larger class of simplicial complexes, namely the circuits of the simplicial matroid. We also give two significant applications of our main theorems. We show that the characterisation of pseudomanifolds with extremal edge numbers given by the Lower Bound Theorem extends to circuits of the simplicial matroid. We also prove the generic case of a conjecture of Kalai concerning the reconstructability of a polytope from its space of stresses. The proofs of our main results adapt earlier ideas of Fogelsanger and Whiteley to the setting of global rigidity. In particular we verify a special case of Whiteley's vertex splitting conjecture for global rigidity.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109953\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004687\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004687","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果 G 是连通的三角形 (d-1)-manifold 的图,对于 d≥3,那么当且仅当 G 是 (d+1)-connected 时,G 在 Rd 中一般是全局刚性的,并且当 d=3 时,G 不是平面的。d=3 的特殊情况验证了康奈利的猜想。我们的结果实际上适用于更大的一类简单复数,即简单矩阵的回路。我们还给出了主要定理的两个重要应用。我们证明了下界定理给出的具有极值边数的伪曼折线的特征可以扩展到单纯 matroid 的回路。我们还证明了 Kalai 关于从应力空间重构多面体的猜想的一般情况。我们主要结果的证明将福格尔桑格和怀特利早先的想法改编成了全局刚性。我们特别验证了怀特利顶点分裂猜想在全局刚性方面的一个特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global rigidity of triangulated manifolds
We prove that if G is the graph of a connected triangulated (d1)-manifold, for d3, then G is generically globally rigid in Rd if and only if it is (d+1)-connected and, if d=3, G is not planar. The special case d=3 verifies a conjecture of Connelly. Our results actually apply to a much larger class of simplicial complexes, namely the circuits of the simplicial matroid. We also give two significant applications of our main theorems. We show that the characterisation of pseudomanifolds with extremal edge numbers given by the Lower Bound Theorem extends to circuits of the simplicial matroid. We also prove the generic case of a conjecture of Kalai concerning the reconstructability of a polytope from its space of stresses. The proofs of our main results adapt earlier ideas of Fogelsanger and Whiteley to the setting of global rigidity. In particular we verify a special case of Whiteley's vertex splitting conjecture for global rigidity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信