Nuan Yang , Liang Guo , Guangcai Wang , Luoyao Xiong , Xinming Song , Hui Li
{"title":"应用主要离子和锶同位素揭示中国西北某典型内流河流域河水和浅层地下水化学演变过程","authors":"Nuan Yang , Liang Guo , Guangcai Wang , Luoyao Xiong , Xinming Song , Hui Li","doi":"10.1016/j.apgeochem.2024.106182","DOIUrl":null,"url":null,"abstract":"<div><div>Studying the hydrochemical evolution of river water and groundwater is vital for comprehending complex regional hydrological cycles and managing water resources. An investigation of hydrochemical evolution mechanism of river water and groundwater was executed in an arid and semi-arid endorheic watershed located in the eastern edge of Qaidam Basin, northwest China, by analyzing major ions and strontium isotopic compositions with the combination of hydrogeochemical methods, PMF model and Pearson correlation analysis. From upstream to downstream, the major ions, <sup>87</sup>Sr/<sup>86</sup>Sr values and hydrochemical types of river water and groundwater show spatial variations. Major ions and <sup>87</sup>Sr/<sup>86</sup>Sr analysis reveal that the hydrochmical compositions of river water and groundwater are primarily attributed to silicate weathering, carbonate weathering, evaporite weathering, and agricultural activity. The contribution of four factors affecting the hydrochemical evolution show obvious spatial variations along the flow path. The hydrochemical compositions of river water from the upstream to downstream are mainly contributed by carbonate and silicate weathering as well as weak evaporite weathering (<25%), which are affected by agricultural activity with a great contribution (>25%) in the middle and lower reaches. The contribution to the hydrochemical compositions of groundwater is relatively small (<25%) for carbonate, silicate and evaporite weathering, but great (>25%) for agricultural activity. This study provides implications for understanding the formation and evolution of water and better watershed water management in that typical endorheic watershed basin and even at larger scales.</div></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"175 ","pages":"Article 106182"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of major ions and Sr isotopes to indicate the evolution of river water and shallow groundwater chemistry in a typical endorheic watershed, northwestern China\",\"authors\":\"Nuan Yang , Liang Guo , Guangcai Wang , Luoyao Xiong , Xinming Song , Hui Li\",\"doi\":\"10.1016/j.apgeochem.2024.106182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Studying the hydrochemical evolution of river water and groundwater is vital for comprehending complex regional hydrological cycles and managing water resources. An investigation of hydrochemical evolution mechanism of river water and groundwater was executed in an arid and semi-arid endorheic watershed located in the eastern edge of Qaidam Basin, northwest China, by analyzing major ions and strontium isotopic compositions with the combination of hydrogeochemical methods, PMF model and Pearson correlation analysis. From upstream to downstream, the major ions, <sup>87</sup>Sr/<sup>86</sup>Sr values and hydrochemical types of river water and groundwater show spatial variations. Major ions and <sup>87</sup>Sr/<sup>86</sup>Sr analysis reveal that the hydrochmical compositions of river water and groundwater are primarily attributed to silicate weathering, carbonate weathering, evaporite weathering, and agricultural activity. The contribution of four factors affecting the hydrochemical evolution show obvious spatial variations along the flow path. The hydrochemical compositions of river water from the upstream to downstream are mainly contributed by carbonate and silicate weathering as well as weak evaporite weathering (<25%), which are affected by agricultural activity with a great contribution (>25%) in the middle and lower reaches. The contribution to the hydrochemical compositions of groundwater is relatively small (<25%) for carbonate, silicate and evaporite weathering, but great (>25%) for agricultural activity. This study provides implications for understanding the formation and evolution of water and better watershed water management in that typical endorheic watershed basin and even at larger scales.</div></div>\",\"PeriodicalId\":8064,\"journal\":{\"name\":\"Applied Geochemistry\",\"volume\":\"175 \",\"pages\":\"Article 106182\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0883292724002877\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292724002877","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Application of major ions and Sr isotopes to indicate the evolution of river water and shallow groundwater chemistry in a typical endorheic watershed, northwestern China
Studying the hydrochemical evolution of river water and groundwater is vital for comprehending complex regional hydrological cycles and managing water resources. An investigation of hydrochemical evolution mechanism of river water and groundwater was executed in an arid and semi-arid endorheic watershed located in the eastern edge of Qaidam Basin, northwest China, by analyzing major ions and strontium isotopic compositions with the combination of hydrogeochemical methods, PMF model and Pearson correlation analysis. From upstream to downstream, the major ions, 87Sr/86Sr values and hydrochemical types of river water and groundwater show spatial variations. Major ions and 87Sr/86Sr analysis reveal that the hydrochmical compositions of river water and groundwater are primarily attributed to silicate weathering, carbonate weathering, evaporite weathering, and agricultural activity. The contribution of four factors affecting the hydrochemical evolution show obvious spatial variations along the flow path. The hydrochemical compositions of river water from the upstream to downstream are mainly contributed by carbonate and silicate weathering as well as weak evaporite weathering (<25%), which are affected by agricultural activity with a great contribution (>25%) in the middle and lower reaches. The contribution to the hydrochemical compositions of groundwater is relatively small (<25%) for carbonate, silicate and evaporite weathering, but great (>25%) for agricultural activity. This study provides implications for understanding the formation and evolution of water and better watershed water management in that typical endorheic watershed basin and even at larger scales.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.