Vasudha Hasija , Aftab Aslam Parwaz Khan , Sonu , Konstantin P. Katin , Savaş Kaya , Pardeep Singh , Pankaj Raizada , Mohammad Asad , Malik Abdul Rub , Khalid A. Alzahrani
{"title":"双 S 型 Bi2MoO6/g-C3N4/Ag2MoO4 三元异质结:界面电荷转移、宽带光谱、增强的氧化还原能力","authors":"Vasudha Hasija , Aftab Aslam Parwaz Khan , Sonu , Konstantin P. Katin , Savaş Kaya , Pardeep Singh , Pankaj Raizada , Mohammad Asad , Malik Abdul Rub , Khalid A. Alzahrani","doi":"10.1016/j.solidstatesciences.2024.107693","DOIUrl":null,"url":null,"abstract":"<div><div>A ternary heterojunction bearing Bi<sub>2</sub>MoO<sub>6</sub> and g-C<sub>3</sub>N<sub>4</sub> is deposited on Ag<sub>2</sub>MoO<sub>4</sub> for the photocatalytic degradation of sulfamethoxazole (SMX) antibiotic. Though the hydrothermal synthesis is non-directional, the dual S- scheme heterojunction formation is governed by the g-C<sub>3</sub>N<sub>4</sub> serving as an electron bridge between Bi<sub>2</sub>MoO<sub>6</sub> and Ag<sub>2</sub>MoO<sub>4.</sub> The potent strong interaction with both Bi<sub>2</sub>MoO<sub>6</sub> and Ag<sub>2</sub>MoO<sub>4</sub> facilitates high oxidation and reduction potential. The optimized Bi<sub>2</sub>MoO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub>/Ag<sub>2</sub>MoO<sub>4</sub> heterojunction with extended visible light absorption exhibits 96 % SMX degradation efficiency within 240 min of irradiations. The dual S-scheme configuration endows in-built electric field with vigorous driving force for charge carrier separation. The charge transfer mechanisms were validated by the photoluminescence results. Bi<sub>2</sub>MoO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub>/Ag<sub>2</sub>MoO<sub>4</sub> heterojunction demonstrates pseudo-first order kinetics with 0.143 kmin<sup>−1</sup> for SMX degradation and ternary photocatalyst 83 % degraded SMX after successive five cycles. In the formed dual S-scheme Bi<sub>2</sub>MoO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub>/Ag<sub>2</sub>MoO<sub>4</sub>heterojunction, <sup>●</sup>OH and <sup>●</sup>O<sub>2</sub><sup>−</sup> radicals were the main reactive species for SMX degradation. This research contributes to the formation of stable multicomponent photocatalytic systems.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"157 ","pages":"Article 107693"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual S-scheme Bi2MoO6/g-C3N4/Ag2MoO4 ternary heterojunction: Interfacial charge transfer, broadband spectrum, enhanced redox ability\",\"authors\":\"Vasudha Hasija , Aftab Aslam Parwaz Khan , Sonu , Konstantin P. Katin , Savaş Kaya , Pardeep Singh , Pankaj Raizada , Mohammad Asad , Malik Abdul Rub , Khalid A. Alzahrani\",\"doi\":\"10.1016/j.solidstatesciences.2024.107693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A ternary heterojunction bearing Bi<sub>2</sub>MoO<sub>6</sub> and g-C<sub>3</sub>N<sub>4</sub> is deposited on Ag<sub>2</sub>MoO<sub>4</sub> for the photocatalytic degradation of sulfamethoxazole (SMX) antibiotic. Though the hydrothermal synthesis is non-directional, the dual S- scheme heterojunction formation is governed by the g-C<sub>3</sub>N<sub>4</sub> serving as an electron bridge between Bi<sub>2</sub>MoO<sub>6</sub> and Ag<sub>2</sub>MoO<sub>4.</sub> The potent strong interaction with both Bi<sub>2</sub>MoO<sub>6</sub> and Ag<sub>2</sub>MoO<sub>4</sub> facilitates high oxidation and reduction potential. The optimized Bi<sub>2</sub>MoO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub>/Ag<sub>2</sub>MoO<sub>4</sub> heterojunction with extended visible light absorption exhibits 96 % SMX degradation efficiency within 240 min of irradiations. The dual S-scheme configuration endows in-built electric field with vigorous driving force for charge carrier separation. The charge transfer mechanisms were validated by the photoluminescence results. Bi<sub>2</sub>MoO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub>/Ag<sub>2</sub>MoO<sub>4</sub> heterojunction demonstrates pseudo-first order kinetics with 0.143 kmin<sup>−1</sup> for SMX degradation and ternary photocatalyst 83 % degraded SMX after successive five cycles. In the formed dual S-scheme Bi<sub>2</sub>MoO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub>/Ag<sub>2</sub>MoO<sub>4</sub>heterojunction, <sup>●</sup>OH and <sup>●</sup>O<sub>2</sub><sup>−</sup> radicals were the main reactive species for SMX degradation. This research contributes to the formation of stable multicomponent photocatalytic systems.</div></div>\",\"PeriodicalId\":432,\"journal\":{\"name\":\"Solid State Sciences\",\"volume\":\"157 \",\"pages\":\"Article 107693\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1293255824002589\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824002589","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
A ternary heterojunction bearing Bi2MoO6 and g-C3N4 is deposited on Ag2MoO4 for the photocatalytic degradation of sulfamethoxazole (SMX) antibiotic. Though the hydrothermal synthesis is non-directional, the dual S- scheme heterojunction formation is governed by the g-C3N4 serving as an electron bridge between Bi2MoO6 and Ag2MoO4. The potent strong interaction with both Bi2MoO6 and Ag2MoO4 facilitates high oxidation and reduction potential. The optimized Bi2MoO6/g-C3N4/Ag2MoO4 heterojunction with extended visible light absorption exhibits 96 % SMX degradation efficiency within 240 min of irradiations. The dual S-scheme configuration endows in-built electric field with vigorous driving force for charge carrier separation. The charge transfer mechanisms were validated by the photoluminescence results. Bi2MoO6/g-C3N4/Ag2MoO4 heterojunction demonstrates pseudo-first order kinetics with 0.143 kmin−1 for SMX degradation and ternary photocatalyst 83 % degraded SMX after successive five cycles. In the formed dual S-scheme Bi2MoO6/g-C3N4/Ag2MoO4heterojunction, ●OH and ●O2− radicals were the main reactive species for SMX degradation. This research contributes to the formation of stable multicomponent photocatalytic systems.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.