带磁流变阻尼器的四杆联动假肢膝关节的轨迹跟踪控制

IF 2.5 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiawei Zhang , Guoliang Hu , Jinpeng Zhao , Wencai Zhu
{"title":"带磁流变阻尼器的四杆联动假肢膝关节的轨迹跟踪控制","authors":"Jiawei Zhang ,&nbsp;Guoliang Hu ,&nbsp;Jinpeng Zhao ,&nbsp;Wencai Zhu","doi":"10.1016/j.jmmm.2024.172537","DOIUrl":null,"url":null,"abstract":"<div><div>In order to improve biomimicry, a four-bar linkage prosthetic knee with magnetorheological (MR) damper was developed in this paper. The principle and structure of four-bar linkage MR prosthetic knee was introduced and its kinetic model was established. A MR damper matching the proposed prosthetic knee was designed, fabricated and tested, and the forward and inverse mechanical model were conducted. In addition, to solve the problems of complex model, poor bionics and low trajectory tracking accuracy in the MR prosthetic knee, a PD-type iterative learning control (ILC) controller was developed. The simulated and experimental test results show that the positive maximum error of the knee joint swing trajectory based on PD-type ILC controller are 2.2°(speed of 0.5 m/s), 4.1°(speed of 1.0 m/s), and 1.9°(speed of 1.5 m/s), respectively, and the negative maximum error of that are −1.4°(speed of 0.5 m/s), −6.7°(speed of 1.0 m/s), and −5.5°(speed of 1.5 m/s), respectively, which effectively tracks the reference swing trajectory.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"610 ","pages":"Article 172537"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trajectory tracking control of a four-bar linkage prosthetic knee with magnetorheological damper\",\"authors\":\"Jiawei Zhang ,&nbsp;Guoliang Hu ,&nbsp;Jinpeng Zhao ,&nbsp;Wencai Zhu\",\"doi\":\"10.1016/j.jmmm.2024.172537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In order to improve biomimicry, a four-bar linkage prosthetic knee with magnetorheological (MR) damper was developed in this paper. The principle and structure of four-bar linkage MR prosthetic knee was introduced and its kinetic model was established. A MR damper matching the proposed prosthetic knee was designed, fabricated and tested, and the forward and inverse mechanical model were conducted. In addition, to solve the problems of complex model, poor bionics and low trajectory tracking accuracy in the MR prosthetic knee, a PD-type iterative learning control (ILC) controller was developed. The simulated and experimental test results show that the positive maximum error of the knee joint swing trajectory based on PD-type ILC controller are 2.2°(speed of 0.5 m/s), 4.1°(speed of 1.0 m/s), and 1.9°(speed of 1.5 m/s), respectively, and the negative maximum error of that are −1.4°(speed of 0.5 m/s), −6.7°(speed of 1.0 m/s), and −5.5°(speed of 1.5 m/s), respectively, which effectively tracks the reference swing trajectory.</div></div>\",\"PeriodicalId\":366,\"journal\":{\"name\":\"Journal of Magnetism and Magnetic Materials\",\"volume\":\"610 \",\"pages\":\"Article 172537\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetism and Magnetic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030488532400828X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030488532400828X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了提高仿生能力,本文开发了一种带有磁流变(MR)减振器的四杆联动假膝。本文介绍了四杆联动磁流变假膝的原理和结构,并建立了其动力学模型。设计、制造和测试了与假膝匹配的磁流变阻尼器,并建立了正向和反向力学模型。此外,为了解决磁共振假膝模型复杂、仿生性差、轨迹跟踪精度低等问题,还开发了一种 PD 型迭代学习控制(ILC)控制器。模拟和实验测试结果表明,基于 PD 型 ILC 控制器的膝关节摆动轨迹正向最大误差分别为 2.2°(速度为 0.5 m/s)、4.1°(速度为 1.0 m/s)和 1.9°(速度为 1.最大负误差分别为-1.4°(速度为 0.5 m/s)、-6.7°(速度为 1.0 m/s)和-5.5°(速度为 1.5 m/s),可有效跟踪参考摆动轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory tracking control of a four-bar linkage prosthetic knee with magnetorheological damper
In order to improve biomimicry, a four-bar linkage prosthetic knee with magnetorheological (MR) damper was developed in this paper. The principle and structure of four-bar linkage MR prosthetic knee was introduced and its kinetic model was established. A MR damper matching the proposed prosthetic knee was designed, fabricated and tested, and the forward and inverse mechanical model were conducted. In addition, to solve the problems of complex model, poor bionics and low trajectory tracking accuracy in the MR prosthetic knee, a PD-type iterative learning control (ILC) controller was developed. The simulated and experimental test results show that the positive maximum error of the knee joint swing trajectory based on PD-type ILC controller are 2.2°(speed of 0.5 m/s), 4.1°(speed of 1.0 m/s), and 1.9°(speed of 1.5 m/s), respectively, and the negative maximum error of that are −1.4°(speed of 0.5 m/s), −6.7°(speed of 1.0 m/s), and −5.5°(speed of 1.5 m/s), respectively, which effectively tracks the reference swing trajectory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnetism and Magnetic Materials
Journal of Magnetism and Magnetic Materials 物理-材料科学:综合
CiteScore
5.30
自引率
11.10%
发文量
1149
审稿时长
59 days
期刊介绍: The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public. Main Categories: Full-length articles: Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged. In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications. The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications. The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism. Review articles: Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信