Hoang Bao Duy , Tran Thi Hue , Tong Minh Son , Le Long Nghia , Luong Thi Hong Lan , Nguyen Minh Duc , Le Hoang Son
{"title":"用于图像标题的牙龈炎口内图像数据集","authors":"Hoang Bao Duy , Tran Thi Hue , Tong Minh Son , Le Long Nghia , Luong Thi Hong Lan , Nguyen Minh Duc , Le Hoang Son","doi":"10.1016/j.dib.2024.110960","DOIUrl":null,"url":null,"abstract":"<div><div>One of the most striking topics in Artificial Intelligence (AI) is Image captioning that aims to integrate computer vision and natural language processing to create descriptions for each image. In this paper, we propose a new dataset designed specifically for image captioning in gingivitis diagnosis using deep learning. It includes 1,096 high-resolution intraoral images of 12 anterior teeth and surrounding gingival tissue that were collected under controlled conditions with professional-grade photography equipment. Each image features detailed labels and descriptive captions. The labeling process involved three periodontists with over ten years of experience who assigned Modified Gingival Index (MGI) scores to each tooth in the images, achieving high inter-rater reliability through a rigorous calibration process. Captions were then created by the same periodontists, offering diverse descriptions of gingivitis severity and locations. The dataset is systematically organized into training, validation, and testing subsets for systematic accessibility. This dataset supports the development of advanced image captioning algorithms and is a valuable educational resource for integrating real-world data into dental research and curriculum.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352340924009223/pdfft?md5=f01ff43bb621297b870041fdf2b81d30&pid=1-s2.0-S2352340924009223-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A dental intraoral image dataset of gingivitis for image captioning\",\"authors\":\"Hoang Bao Duy , Tran Thi Hue , Tong Minh Son , Le Long Nghia , Luong Thi Hong Lan , Nguyen Minh Duc , Le Hoang Son\",\"doi\":\"10.1016/j.dib.2024.110960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One of the most striking topics in Artificial Intelligence (AI) is Image captioning that aims to integrate computer vision and natural language processing to create descriptions for each image. In this paper, we propose a new dataset designed specifically for image captioning in gingivitis diagnosis using deep learning. It includes 1,096 high-resolution intraoral images of 12 anterior teeth and surrounding gingival tissue that were collected under controlled conditions with professional-grade photography equipment. Each image features detailed labels and descriptive captions. The labeling process involved three periodontists with over ten years of experience who assigned Modified Gingival Index (MGI) scores to each tooth in the images, achieving high inter-rater reliability through a rigorous calibration process. Captions were then created by the same periodontists, offering diverse descriptions of gingivitis severity and locations. The dataset is systematically organized into training, validation, and testing subsets for systematic accessibility. This dataset supports the development of advanced image captioning algorithms and is a valuable educational resource for integrating real-world data into dental research and curriculum.</div></div>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352340924009223/pdfft?md5=f01ff43bb621297b870041fdf2b81d30&pid=1-s2.0-S2352340924009223-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352340924009223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924009223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A dental intraoral image dataset of gingivitis for image captioning
One of the most striking topics in Artificial Intelligence (AI) is Image captioning that aims to integrate computer vision and natural language processing to create descriptions for each image. In this paper, we propose a new dataset designed specifically for image captioning in gingivitis diagnosis using deep learning. It includes 1,096 high-resolution intraoral images of 12 anterior teeth and surrounding gingival tissue that were collected under controlled conditions with professional-grade photography equipment. Each image features detailed labels and descriptive captions. The labeling process involved three periodontists with over ten years of experience who assigned Modified Gingival Index (MGI) scores to each tooth in the images, achieving high inter-rater reliability through a rigorous calibration process. Captions were then created by the same periodontists, offering diverse descriptions of gingivitis severity and locations. The dataset is systematically organized into training, validation, and testing subsets for systematic accessibility. This dataset supports the development of advanced image captioning algorithms and is a valuable educational resource for integrating real-world data into dental research and curriculum.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.