{"title":"利用分子动力学模拟研究二氧化硅纳米颗粒存在时从水中溶剂萃取醋酸和丙酮的过程","authors":"Hojatollah Moradi, Hossein Bahmanyar, Hedayat Azizpour","doi":"10.1016/j.jmgm.2024.108871","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, molecular dynamics simulation was used to predict the molecular diffusion coefficient of acetic acid and acetone in water, toluene, and benzene. The results showed that COMPASS was the best force field to optimize the atoms and structure of molecules, and the results were compared with experimental equations. The Arrhenius behavior of the molecular diffusion coefficient was investigated at three temperatures. The extraction of acetic acid and acetone from water was investigated using two solvents, toluene, and benzene, with and without SiO<sub>2</sub> nanoparticles. The relative concentration change diagram was drawn for three cases without and with SiO<sub>2</sub> nanoparticles. To quantitatively examine the results, extraction efficiency, selectivity, and distribution coefficient were calculated. The extraction efficiency of acetone from water by benzene in the absence of silica nanoparticles was 65.748 %, this value in the presence of SiO<sub>2</sub> nanoparticles with a concentration of 0.2231 wt% was 72.45 % due to the Brownian motion of the nanoparticles, which increased the mass transfer and as a result, the extraction efficiency. With the further increase of nanoparticles up to 1.7573 wt%, the extraction efficiency decreased to 61.276 %, which can be attributed to the accumulation of silica nanoparticles and the decrease in the free movement of nanoparticles.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"133 ","pages":"Article 108871"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of solvent extraction of acetic acid and acetone from water in the presence of SiO2 nanoparticles using molecular dynamics simulation\",\"authors\":\"Hojatollah Moradi, Hossein Bahmanyar, Hedayat Azizpour\",\"doi\":\"10.1016/j.jmgm.2024.108871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, molecular dynamics simulation was used to predict the molecular diffusion coefficient of acetic acid and acetone in water, toluene, and benzene. The results showed that COMPASS was the best force field to optimize the atoms and structure of molecules, and the results were compared with experimental equations. The Arrhenius behavior of the molecular diffusion coefficient was investigated at three temperatures. The extraction of acetic acid and acetone from water was investigated using two solvents, toluene, and benzene, with and without SiO<sub>2</sub> nanoparticles. The relative concentration change diagram was drawn for three cases without and with SiO<sub>2</sub> nanoparticles. To quantitatively examine the results, extraction efficiency, selectivity, and distribution coefficient were calculated. The extraction efficiency of acetone from water by benzene in the absence of silica nanoparticles was 65.748 %, this value in the presence of SiO<sub>2</sub> nanoparticles with a concentration of 0.2231 wt% was 72.45 % due to the Brownian motion of the nanoparticles, which increased the mass transfer and as a result, the extraction efficiency. With the further increase of nanoparticles up to 1.7573 wt%, the extraction efficiency decreased to 61.276 %, which can be attributed to the accumulation of silica nanoparticles and the decrease in the free movement of nanoparticles.</div></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"133 \",\"pages\":\"Article 108871\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1093326324001712\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324001712","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Investigation of solvent extraction of acetic acid and acetone from water in the presence of SiO2 nanoparticles using molecular dynamics simulation
In this study, molecular dynamics simulation was used to predict the molecular diffusion coefficient of acetic acid and acetone in water, toluene, and benzene. The results showed that COMPASS was the best force field to optimize the atoms and structure of molecules, and the results were compared with experimental equations. The Arrhenius behavior of the molecular diffusion coefficient was investigated at three temperatures. The extraction of acetic acid and acetone from water was investigated using two solvents, toluene, and benzene, with and without SiO2 nanoparticles. The relative concentration change diagram was drawn for three cases without and with SiO2 nanoparticles. To quantitatively examine the results, extraction efficiency, selectivity, and distribution coefficient were calculated. The extraction efficiency of acetone from water by benzene in the absence of silica nanoparticles was 65.748 %, this value in the presence of SiO2 nanoparticles with a concentration of 0.2231 wt% was 72.45 % due to the Brownian motion of the nanoparticles, which increased the mass transfer and as a result, the extraction efficiency. With the further increase of nanoparticles up to 1.7573 wt%, the extraction efficiency decreased to 61.276 %, which can be attributed to the accumulation of silica nanoparticles and the decrease in the free movement of nanoparticles.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.