增强叶片病害检测:用于分割的 UNet 和用于病害分类的优化 EfficientNet

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jameer Kotwal , Ramgopal Kashyap , Pathan Mohd Shafi , Vinod Kimbahune
{"title":"增强叶片病害检测:用于分割的 UNet 和用于病害分类的优化 EfficientNet","authors":"Jameer Kotwal ,&nbsp;Ramgopal Kashyap ,&nbsp;Pathan Mohd Shafi ,&nbsp;Vinod Kimbahune","doi":"10.1016/j.simpa.2024.100701","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript delineates the code developed for a published scholarly article aimed at supporting researchers in addressing plant leaf disease detection and classification (PLDC) challenges while evaluating the efficacy of various deep learning models. Furthermore, the research incorporates preprocessing strategies, correlation, segmentation employing the UNet model, feature extraction methods and EfficientNet model. The software model generates graphs such as confusion matrix, ROC curve (Receiver Operating Characteristic), and visual representations of loss and accuracy graphs. The initial research was disseminated in the Multimedia Tools and Applications journal, and the accompanying dataset was also introduced in the Data in Brief journal.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"22 ","pages":"Article 100701"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000897/pdfft?md5=aaec845754e88bf11d97594b0f75863a&pid=1-s2.0-S2665963824000897-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced leaf disease detection: UNet for segmentation and optimized EfficientNet for disease classification\",\"authors\":\"Jameer Kotwal ,&nbsp;Ramgopal Kashyap ,&nbsp;Pathan Mohd Shafi ,&nbsp;Vinod Kimbahune\",\"doi\":\"10.1016/j.simpa.2024.100701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This manuscript delineates the code developed for a published scholarly article aimed at supporting researchers in addressing plant leaf disease detection and classification (PLDC) challenges while evaluating the efficacy of various deep learning models. Furthermore, the research incorporates preprocessing strategies, correlation, segmentation employing the UNet model, feature extraction methods and EfficientNet model. The software model generates graphs such as confusion matrix, ROC curve (Receiver Operating Characteristic), and visual representations of loss and accuracy graphs. The initial research was disseminated in the Multimedia Tools and Applications journal, and the accompanying dataset was also introduced in the Data in Brief journal.</div></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"22 \",\"pages\":\"Article 100701\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000897/pdfft?md5=aaec845754e88bf11d97594b0f75863a&pid=1-s2.0-S2665963824000897-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本手稿描述了为一篇已发表的学术文章开发的代码,旨在支持研究人员应对植物叶片病害检测和分类(PLDC)挑战,同时评估各种深度学习模型的功效。此外,该研究还纳入了预处理策略、相关性、采用 UNet 模型的分割、特征提取方法和 EfficientNet 模型。软件模型可生成混淆矩阵、ROC 曲线(Receiver Operating Characteristic)等图形,以及损失和准确率图形的可视化表示。最初的研究成果在《多媒体工具与应用》期刊上发表,随附的数据集也在 《Data in Brief》期刊上介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced leaf disease detection: UNet for segmentation and optimized EfficientNet for disease classification
This manuscript delineates the code developed for a published scholarly article aimed at supporting researchers in addressing plant leaf disease detection and classification (PLDC) challenges while evaluating the efficacy of various deep learning models. Furthermore, the research incorporates preprocessing strategies, correlation, segmentation employing the UNet model, feature extraction methods and EfficientNet model. The software model generates graphs such as confusion matrix, ROC curve (Receiver Operating Characteristic), and visual representations of loss and accuracy graphs. The initial research was disseminated in the Multimedia Tools and Applications journal, and the accompanying dataset was also introduced in the Data in Brief journal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信