{"title":"具有唯一完美匹配的二叉单环图,其最小正特征值等于","authors":"Sasmita Barik, Subhasish Behera, Steve Kirkland","doi":"10.1080/03081087.2024.2404453","DOIUrl":null,"url":null,"abstract":"The smallest positive eigenvalue τ(G) of a simple graph G is the smallest positive eigenvalue of its adjacency matrix A(G). In [F. J. Zhang and A. Chang, Acyclic molecules with greatest HOMO-LUMO s...","PeriodicalId":49905,"journal":{"name":"Linear & Multilinear Algebra","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bipartite unicyclic graphs with a unique perfect matching having the smallest positive eigenvalue equal to\",\"authors\":\"Sasmita Barik, Subhasish Behera, Steve Kirkland\",\"doi\":\"10.1080/03081087.2024.2404453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The smallest positive eigenvalue τ(G) of a simple graph G is the smallest positive eigenvalue of its adjacency matrix A(G). In [F. J. Zhang and A. Chang, Acyclic molecules with greatest HOMO-LUMO s...\",\"PeriodicalId\":49905,\"journal\":{\"name\":\"Linear & Multilinear Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear & Multilinear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03081087.2024.2404453\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear & Multilinear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03081087.2024.2404453","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
简单图 G 的最小正特征值 τ(G) 是其邻接矩阵 A(G) 的最小正特征值。在[F.J. Zhang and A. Chang, Acyclic molecules with greatest HOMO-LUMO s...
Bipartite unicyclic graphs with a unique perfect matching having the smallest positive eigenvalue equal to
The smallest positive eigenvalue τ(G) of a simple graph G is the smallest positive eigenvalue of its adjacency matrix A(G). In [F. J. Zhang and A. Chang, Acyclic molecules with greatest HOMO-LUMO s...
期刊介绍:
Linear and Multilinear Algebra publishes high-quality original research papers that advance the study of linear and multilinear algebra, or that include novel applications of linear and multilinear algebra to other branches of mathematics and science. Linear and Multilinear Algebra also publishes research problems, survey articles and book reviews of interest to researchers in linear and multilinear algebra. Appropriate areas include, but are not limited to:
spaces over fields or rings
tensor algebras
nonnegative matrices
inequalities in linear algebra
combinatorial matrix theory
numerical linear algebra
representation theory
Lie theory
invariant theory and
operator theory
The audience for Linear and Multilinear Algebra includes both industrial and academic mathematicians.