{"title":"亚速尔群岛福戈火山磁突触数据的三维解读","authors":"","doi":"10.1016/j.jvolgeores.2024.108183","DOIUrl":null,"url":null,"abstract":"<div><div>The resistivity structure of Fogo volcano and the seismically active Congro region of São Miguel Island has been determined by 3-D inversion from 44 magnetotelluric soundings to yield new insights into the internal architecture of this volcanic island. Following comprehensive testing of processing codes to yield optimum magnetotelluric responses from the collected time-series, a robust electrical resistivity model was obtained. Sensitivity analysis of various features from the inversion process was used to determine their reliability, and aid geological interpretation. The magnetotelluric data imaged, and provided new structural insights into the Ribeira Grande geothermal system on the northern flank of Fogo volcano, where a shallow low resistivity (1 - <span><math><mn>5</mn><mspace></mspace><mi>Ωm</mi></math></span>) region has strong correlation with borehole data, and is shown to be an excellent proxy for mapping temperature and clay alteration mineralogy. Beneath the central edifice of Fogo volcano and also throughout the Congro region, the geology is very resistive, however the new magnetotelluric observations do not yield any further constraints on the origin of the seismicity that poses threats to the local populations residing on this hazardous island.</div></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional interpretation of magnetotelluric data at Fogo Volcano, Azores Islands\",\"authors\":\"\",\"doi\":\"10.1016/j.jvolgeores.2024.108183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The resistivity structure of Fogo volcano and the seismically active Congro region of São Miguel Island has been determined by 3-D inversion from 44 magnetotelluric soundings to yield new insights into the internal architecture of this volcanic island. Following comprehensive testing of processing codes to yield optimum magnetotelluric responses from the collected time-series, a robust electrical resistivity model was obtained. Sensitivity analysis of various features from the inversion process was used to determine their reliability, and aid geological interpretation. The magnetotelluric data imaged, and provided new structural insights into the Ribeira Grande geothermal system on the northern flank of Fogo volcano, where a shallow low resistivity (1 - <span><math><mn>5</mn><mspace></mspace><mi>Ωm</mi></math></span>) region has strong correlation with borehole data, and is shown to be an excellent proxy for mapping temperature and clay alteration mineralogy. Beneath the central edifice of Fogo volcano and also throughout the Congro region, the geology is very resistive, however the new magnetotelluric observations do not yield any further constraints on the origin of the seismicity that poses threats to the local populations residing on this hazardous island.</div></div>\",\"PeriodicalId\":54753,\"journal\":{\"name\":\"Journal of Volcanology and Geothermal Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Volcanology and Geothermal Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377027324001756\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027324001756","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Three-dimensional interpretation of magnetotelluric data at Fogo Volcano, Azores Islands
The resistivity structure of Fogo volcano and the seismically active Congro region of São Miguel Island has been determined by 3-D inversion from 44 magnetotelluric soundings to yield new insights into the internal architecture of this volcanic island. Following comprehensive testing of processing codes to yield optimum magnetotelluric responses from the collected time-series, a robust electrical resistivity model was obtained. Sensitivity analysis of various features from the inversion process was used to determine their reliability, and aid geological interpretation. The magnetotelluric data imaged, and provided new structural insights into the Ribeira Grande geothermal system on the northern flank of Fogo volcano, where a shallow low resistivity (1 - ) region has strong correlation with borehole data, and is shown to be an excellent proxy for mapping temperature and clay alteration mineralogy. Beneath the central edifice of Fogo volcano and also throughout the Congro region, the geology is very resistive, however the new magnetotelluric observations do not yield any further constraints on the origin of the seismicity that poses threats to the local populations residing on this hazardous island.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.