非均匀板中的非典型二次谐波 A0 模 Lamb 波,用于局部萌芽损伤监测

IF 4.3 2区 工程技术 Q1 ACOUSTICS
{"title":"非均匀板中的非典型二次谐波 A0 模 Lamb 波,用于局部萌芽损伤监测","authors":"","doi":"10.1016/j.jsv.2024.118744","DOIUrl":null,"url":null,"abstract":"<div><div>Plates with non-uniform thickness, such as stiffened and notched plates, are commonly seen in engineering applications. Monitoring incipient damage in these structures is crucial to ensure their safety during service. Second harmonic Lamb waves hold great promise for structural health monitoring applications. However, the mechanisms underpinning the generation of the second harmonic Lamb waves in non-uniform plates are still not well understood due to the complex wave field. To tackle this issue, a theoretical analysis is first conducted to highlight the so-called atypical second harmonic A0 mode waves (2nd A0 waves) generated at the structural non-uniform section. Their existence, as well as their potential for local incipient damage monitoring applications, is then confirmed by finite element simulations. Experiments are carried out on a notched aluminum plate to monitor the incipient plastic damage induced by bending. Three mechanisms contributing to the generation of the atypical 2nd A0 waves in the non-uniform plate are identified: mode conversion from the second harmonic S0 mode waves, asymmetric nonlinear driving forces at the non-uniform section, and the mutual interaction between the mode-converted fundamental A0 and S0 waves. This study shows that the reported atypical 2nd A0 waves provide an effective means for monitoring local incipient damage in non-uniform structures.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atypical second harmonic A0 mode Lamb waves in non-uniform plates for local incipient damage monitoring\",\"authors\":\"\",\"doi\":\"10.1016/j.jsv.2024.118744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plates with non-uniform thickness, such as stiffened and notched plates, are commonly seen in engineering applications. Monitoring incipient damage in these structures is crucial to ensure their safety during service. Second harmonic Lamb waves hold great promise for structural health monitoring applications. However, the mechanisms underpinning the generation of the second harmonic Lamb waves in non-uniform plates are still not well understood due to the complex wave field. To tackle this issue, a theoretical analysis is first conducted to highlight the so-called atypical second harmonic A0 mode waves (2nd A0 waves) generated at the structural non-uniform section. Their existence, as well as their potential for local incipient damage monitoring applications, is then confirmed by finite element simulations. Experiments are carried out on a notched aluminum plate to monitor the incipient plastic damage induced by bending. Three mechanisms contributing to the generation of the atypical 2nd A0 waves in the non-uniform plate are identified: mode conversion from the second harmonic S0 mode waves, asymmetric nonlinear driving forces at the non-uniform section, and the mutual interaction between the mode-converted fundamental A0 and S0 waves. This study shows that the reported atypical 2nd A0 waves provide an effective means for monitoring local incipient damage in non-uniform structures.</div></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X24005066\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24005066","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

厚度不均匀的板材(如加劲板和缺口板)在工程应用中很常见。要确保这些结构在使用过程中的安全,监测其萌芽损伤至关重要。二次谐波λ波在结构健康监测应用中大有可为。然而,由于波场复杂,人们对非均匀板中二次谐波λ波的产生机制仍不甚了解。为了解决这个问题,我们首先进行了理论分析,以突出在结构非均匀截面上产生的所谓非典型二次谐波 A0 模式波(2nd A0 波)。然后通过有限元模拟证实了它们的存在,以及它们在局部萌芽损伤监测应用中的潜力。实验是在有缺口的铝板上进行的,目的是监测由弯曲引起的萌芽塑性损伤。确定了在非均匀板中产生非典型 2 次 A0 波的三种机制:从二次谐波 S0 模态波的模态转换、非均匀截面处的非对称非线性驱动力以及模态转换后的基波 A0 波和 S0 波之间的相互影响。这项研究表明,所报告的非典型 2 次 A0 波为监测非均匀结构的局部萌芽损伤提供了有效手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atypical second harmonic A0 mode Lamb waves in non-uniform plates for local incipient damage monitoring
Plates with non-uniform thickness, such as stiffened and notched plates, are commonly seen in engineering applications. Monitoring incipient damage in these structures is crucial to ensure their safety during service. Second harmonic Lamb waves hold great promise for structural health monitoring applications. However, the mechanisms underpinning the generation of the second harmonic Lamb waves in non-uniform plates are still not well understood due to the complex wave field. To tackle this issue, a theoretical analysis is first conducted to highlight the so-called atypical second harmonic A0 mode waves (2nd A0 waves) generated at the structural non-uniform section. Their existence, as well as their potential for local incipient damage monitoring applications, is then confirmed by finite element simulations. Experiments are carried out on a notched aluminum plate to monitor the incipient plastic damage induced by bending. Three mechanisms contributing to the generation of the atypical 2nd A0 waves in the non-uniform plate are identified: mode conversion from the second harmonic S0 mode waves, asymmetric nonlinear driving forces at the non-uniform section, and the mutual interaction between the mode-converted fundamental A0 and S0 waves. This study shows that the reported atypical 2nd A0 waves provide an effective means for monitoring local incipient damage in non-uniform structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信