{"title":"基于分形理论的二氧化碳压裂岩石损伤特征研究","authors":"Kang Wang, Chunguang Chang","doi":"10.1016/j.tafmec.2024.104691","DOIUrl":null,"url":null,"abstract":"<div><div>CO<sub>2</sub> fracturing is emerging as a carbon–neutral technology for underground excavation. Traditional studies on structural stability during excavation have largely focused on the vibration characteristics of rocks. However, the inherent damage in rock layers during CO<sub>2</sub> fracturing poses significant challenges for understanding damage mechanisms under complex multi-field coupling. This study introduces a novel approach for calculating rock damage induced by CO<sub>2</sub> fracturing.We developed a physical model of CO<sub>2</sub> fracturing and applied a “two-stage effect” division method, creating a staged damage calculation model based on fractal damage mechanics theory. Experiments were conducted under combined dynamic and static loads to evaluate rock damage. A two-factor Analysis of Variance (ANOVA) was used to assess the significance of dynamic and static effects on the extent of rock damage.The findings revealed that static loads guide crack propagation direction, reducing the angle between the crack and vertical axis, while initial CO<sub>2</sub> dynamic load pressure strongly influences crack patterns, with higher pressures resulting in more fractures. The extent of rock damage observed ranged from 0.680 to 0.845. Although dynamic loads showed no significant impact, static loads exhibited a notable effect, as indicated by a P-value approaching 0.01. This study’s fractal-damage calculation model provides a valuable tool for addressing stability concerns in structures affected by CO<sub>2</sub> fracturing.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"134 ","pages":"Article 104691"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the characteristics of CO2 fracturing rock damage based on fractal theory\",\"authors\":\"Kang Wang, Chunguang Chang\",\"doi\":\"10.1016/j.tafmec.2024.104691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>CO<sub>2</sub> fracturing is emerging as a carbon–neutral technology for underground excavation. Traditional studies on structural stability during excavation have largely focused on the vibration characteristics of rocks. However, the inherent damage in rock layers during CO<sub>2</sub> fracturing poses significant challenges for understanding damage mechanisms under complex multi-field coupling. This study introduces a novel approach for calculating rock damage induced by CO<sub>2</sub> fracturing.We developed a physical model of CO<sub>2</sub> fracturing and applied a “two-stage effect” division method, creating a staged damage calculation model based on fractal damage mechanics theory. Experiments were conducted under combined dynamic and static loads to evaluate rock damage. A two-factor Analysis of Variance (ANOVA) was used to assess the significance of dynamic and static effects on the extent of rock damage.The findings revealed that static loads guide crack propagation direction, reducing the angle between the crack and vertical axis, while initial CO<sub>2</sub> dynamic load pressure strongly influences crack patterns, with higher pressures resulting in more fractures. The extent of rock damage observed ranged from 0.680 to 0.845. Although dynamic loads showed no significant impact, static loads exhibited a notable effect, as indicated by a P-value approaching 0.01. This study’s fractal-damage calculation model provides a valuable tool for addressing stability concerns in structures affected by CO<sub>2</sub> fracturing.</div></div>\",\"PeriodicalId\":22879,\"journal\":{\"name\":\"Theoretical and Applied Fracture Mechanics\",\"volume\":\"134 \",\"pages\":\"Article 104691\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167844224004415\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224004415","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Study on the characteristics of CO2 fracturing rock damage based on fractal theory
CO2 fracturing is emerging as a carbon–neutral technology for underground excavation. Traditional studies on structural stability during excavation have largely focused on the vibration characteristics of rocks. However, the inherent damage in rock layers during CO2 fracturing poses significant challenges for understanding damage mechanisms under complex multi-field coupling. This study introduces a novel approach for calculating rock damage induced by CO2 fracturing.We developed a physical model of CO2 fracturing and applied a “two-stage effect” division method, creating a staged damage calculation model based on fractal damage mechanics theory. Experiments were conducted under combined dynamic and static loads to evaluate rock damage. A two-factor Analysis of Variance (ANOVA) was used to assess the significance of dynamic and static effects on the extent of rock damage.The findings revealed that static loads guide crack propagation direction, reducing the angle between the crack and vertical axis, while initial CO2 dynamic load pressure strongly influences crack patterns, with higher pressures resulting in more fractures. The extent of rock damage observed ranged from 0.680 to 0.845. Although dynamic loads showed no significant impact, static loads exhibited a notable effect, as indicated by a P-value approaching 0.01. This study’s fractal-damage calculation model provides a valuable tool for addressing stability concerns in structures affected by CO2 fracturing.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.