{"title":"钢桥接缝多裂缝扩展特征研究","authors":"","doi":"10.1016/j.tafmec.2024.104688","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the morphological changes and interaction mechanisms of multiple crack propagations in steel bridge joints. Fatigue testing was conducted to determine the locations at which multiple cracks initiated and to obtain fatigue fracture surfaces with easily discernible crack propagation traces. Based on the theory of fracture mechanics, the propagation behavior of coplanar and out-of-plane cracks in joints was simulated using ABAQUS and FRANC3D joint simulation technology. The characteristics of the morphological changes were analyzed, and the interaction mechanism between different crack spacings was investigated to quantitatively characterize the relative positions at which cracks were enhanced or suppressed. The results showed that coplanar cracks exhibited different morphological trends and propagation rates in different stages of propagation. The shape of the crack front continuously changed, and the merging point that appeared during fusion rapidly expanded and evolved into a semi-elliptical crack. The fatigue life was more sensitive to the relative position of multiple cracks. In particular, the fusion of coplanar cracks significantly reduced the fatigue life, and the mutual suppression effect between heterogeneous cracks increased the fatigue life. When the ratio of coplanar crack spacing to crack length (<em>s</em>/2<em>c</em>) was less than 0.2, the crack fusion process significantly accelerated. In addition, when the <em>a</em><sub>2</sub>/<em>a</em><sub>1</sub> ratio of the crack propagation depth dropped below 0.5, the suppression effect was significant. Finally, by determining the spacing between multiple cracks, the method established this study can provide a reference for the design of fatigue resistance and joint optimization.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the propagation characteristics of multiple cracks in steel bridge joints\",\"authors\":\"\",\"doi\":\"10.1016/j.tafmec.2024.104688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the morphological changes and interaction mechanisms of multiple crack propagations in steel bridge joints. Fatigue testing was conducted to determine the locations at which multiple cracks initiated and to obtain fatigue fracture surfaces with easily discernible crack propagation traces. Based on the theory of fracture mechanics, the propagation behavior of coplanar and out-of-plane cracks in joints was simulated using ABAQUS and FRANC3D joint simulation technology. The characteristics of the morphological changes were analyzed, and the interaction mechanism between different crack spacings was investigated to quantitatively characterize the relative positions at which cracks were enhanced or suppressed. The results showed that coplanar cracks exhibited different morphological trends and propagation rates in different stages of propagation. The shape of the crack front continuously changed, and the merging point that appeared during fusion rapidly expanded and evolved into a semi-elliptical crack. The fatigue life was more sensitive to the relative position of multiple cracks. In particular, the fusion of coplanar cracks significantly reduced the fatigue life, and the mutual suppression effect between heterogeneous cracks increased the fatigue life. When the ratio of coplanar crack spacing to crack length (<em>s</em>/2<em>c</em>) was less than 0.2, the crack fusion process significantly accelerated. In addition, when the <em>a</em><sub>2</sub>/<em>a</em><sub>1</sub> ratio of the crack propagation depth dropped below 0.5, the suppression effect was significant. Finally, by determining the spacing between multiple cracks, the method established this study can provide a reference for the design of fatigue resistance and joint optimization.</div></div>\",\"PeriodicalId\":22879,\"journal\":{\"name\":\"Theoretical and Applied Fracture Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167844224004385\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224004385","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Research on the propagation characteristics of multiple cracks in steel bridge joints
This study explores the morphological changes and interaction mechanisms of multiple crack propagations in steel bridge joints. Fatigue testing was conducted to determine the locations at which multiple cracks initiated and to obtain fatigue fracture surfaces with easily discernible crack propagation traces. Based on the theory of fracture mechanics, the propagation behavior of coplanar and out-of-plane cracks in joints was simulated using ABAQUS and FRANC3D joint simulation technology. The characteristics of the morphological changes were analyzed, and the interaction mechanism between different crack spacings was investigated to quantitatively characterize the relative positions at which cracks were enhanced or suppressed. The results showed that coplanar cracks exhibited different morphological trends and propagation rates in different stages of propagation. The shape of the crack front continuously changed, and the merging point that appeared during fusion rapidly expanded and evolved into a semi-elliptical crack. The fatigue life was more sensitive to the relative position of multiple cracks. In particular, the fusion of coplanar cracks significantly reduced the fatigue life, and the mutual suppression effect between heterogeneous cracks increased the fatigue life. When the ratio of coplanar crack spacing to crack length (s/2c) was less than 0.2, the crack fusion process significantly accelerated. In addition, when the a2/a1 ratio of the crack propagation depth dropped below 0.5, the suppression effect was significant. Finally, by determining the spacing between multiple cracks, the method established this study can provide a reference for the design of fatigue resistance and joint optimization.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.