{"title":"两相、非等压和非等温 PEM 燃料电池的全面建模、分析和优化","authors":"Hui Lv, Jiaxun You, Junlei Wang, Yafei Wang","doi":"10.1016/j.compchemeng.2024.108881","DOIUrl":null,"url":null,"abstract":"<div><div>This study models a non-isobaric, non-isothermal two-phase flow in a Polymer Electrolyte Membrane Fuel Cell (PEM-FC), focusing on conservation equations for mass, energy, and momentum across its components. Verification involves comparing PEM-FC performance and temperature distribution with experimental and literature data, showing consistent agreements. Results indicate that increasing cathode channel pressure enhances membrane moisture and reduces power loss. Higher oxygen partial pressure improves PEM-FC performance, whereas increased anode channel pressure heightens ohmic losses and lowers output voltage. Temperature distribution reveals highest temperatures near the cathode catalyst layer due to electrochemical reactions. Adjusting pressures in cathode and anode channels affects these temperatures accordingly. PEM-FC power density is optimized using various algorithms, with simulated annealing proving most effective. Optimal values for gas diffusion layer thickness, electrode porosity, and inlet humidity are determined. Under constant current density, power density increases by 6 % compared to baseline conditions, demonstrating effective parameter optimization for enhancing PEM-FC performance.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108881"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098135424002990/pdfft?md5=3bf8a3330162afa1d0159d6aae973f94&pid=1-s2.0-S0098135424002990-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A comprehensive modeling, analysis, and optimization of two phase, non–isobaric, and non–isothermal PEM fuel cell\",\"authors\":\"Hui Lv, Jiaxun You, Junlei Wang, Yafei Wang\",\"doi\":\"10.1016/j.compchemeng.2024.108881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study models a non-isobaric, non-isothermal two-phase flow in a Polymer Electrolyte Membrane Fuel Cell (PEM-FC), focusing on conservation equations for mass, energy, and momentum across its components. Verification involves comparing PEM-FC performance and temperature distribution with experimental and literature data, showing consistent agreements. Results indicate that increasing cathode channel pressure enhances membrane moisture and reduces power loss. Higher oxygen partial pressure improves PEM-FC performance, whereas increased anode channel pressure heightens ohmic losses and lowers output voltage. Temperature distribution reveals highest temperatures near the cathode catalyst layer due to electrochemical reactions. Adjusting pressures in cathode and anode channels affects these temperatures accordingly. PEM-FC power density is optimized using various algorithms, with simulated annealing proving most effective. Optimal values for gas diffusion layer thickness, electrode porosity, and inlet humidity are determined. Under constant current density, power density increases by 6 % compared to baseline conditions, demonstrating effective parameter optimization for enhancing PEM-FC performance.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"192 \",\"pages\":\"Article 108881\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0098135424002990/pdfft?md5=3bf8a3330162afa1d0159d6aae973f94&pid=1-s2.0-S0098135424002990-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424002990\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002990","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A comprehensive modeling, analysis, and optimization of two phase, non–isobaric, and non–isothermal PEM fuel cell
This study models a non-isobaric, non-isothermal two-phase flow in a Polymer Electrolyte Membrane Fuel Cell (PEM-FC), focusing on conservation equations for mass, energy, and momentum across its components. Verification involves comparing PEM-FC performance and temperature distribution with experimental and literature data, showing consistent agreements. Results indicate that increasing cathode channel pressure enhances membrane moisture and reduces power loss. Higher oxygen partial pressure improves PEM-FC performance, whereas increased anode channel pressure heightens ohmic losses and lowers output voltage. Temperature distribution reveals highest temperatures near the cathode catalyst layer due to electrochemical reactions. Adjusting pressures in cathode and anode channels affects these temperatures accordingly. PEM-FC power density is optimized using various algorithms, with simulated annealing proving most effective. Optimal values for gas diffusion layer thickness, electrode porosity, and inlet humidity are determined. Under constant current density, power density increases by 6 % compared to baseline conditions, demonstrating effective parameter optimization for enhancing PEM-FC performance.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.