液体火箭发动机非平衡燃烧过程的数学建模

IF 3.1 2区 物理与天体物理 Q1 ENGINEERING, AEROSPACE
{"title":"液体火箭发动机非平衡燃烧过程的数学建模","authors":"","doi":"10.1016/j.actaastro.2024.09.035","DOIUrl":null,"url":null,"abstract":"<div><div>The key problems of safety for Space missions begin with safety, reliability and effectiveness of rocket engines of different types used at different launch stages and orbit corrections. Today, the possibilities for improving chemical rocket engines of traditional types are almost completely exhausted and are limited to minor improvements in energy-mass characteristics. A qualitative leap in the development of engine building can only be achieved through the development and implementation of new types of engines. As unburned fuel in the combustion chamber is a loss of thrust for the engine, the study of droplet combustion and evaporation, in particular, the droplet lifetime, is of fundamental importance in the creation of combustion chambers using atomized liquid fuel in their operation.</div><div>In this paper a quasi-stationary model, which describes the evaporation of a single droplet in a gaseous atmosphere, is presented. Since in the numerical implementation the mass flow from the liquid phase to the gas and the heat flux from the droplet to the gas are calculated based on the Peclet number and the droplet surface temperature obtained from the quasi-stationary problem, approximation formulas for these parameters are developed in this paper. As an example, the problems of evaporation of a liquid oxygen droplet in an atmosphere of gaseous hydrogen and a droplet of liquid n-decane in an atmosphere of gaseous oxygen are considered. Formulas for calculation of mass flow and heat flux from liquid phase to gas based on the solution of the droplet evaporation problem are presented. Estimates of droplets lifetime in engine are provided based on developed droplet evaporation models.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling of nonequilibrium combustion processes in a liquid rocket engine\",\"authors\":\"\",\"doi\":\"10.1016/j.actaastro.2024.09.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The key problems of safety for Space missions begin with safety, reliability and effectiveness of rocket engines of different types used at different launch stages and orbit corrections. Today, the possibilities for improving chemical rocket engines of traditional types are almost completely exhausted and are limited to minor improvements in energy-mass characteristics. A qualitative leap in the development of engine building can only be achieved through the development and implementation of new types of engines. As unburned fuel in the combustion chamber is a loss of thrust for the engine, the study of droplet combustion and evaporation, in particular, the droplet lifetime, is of fundamental importance in the creation of combustion chambers using atomized liquid fuel in their operation.</div><div>In this paper a quasi-stationary model, which describes the evaporation of a single droplet in a gaseous atmosphere, is presented. Since in the numerical implementation the mass flow from the liquid phase to the gas and the heat flux from the droplet to the gas are calculated based on the Peclet number and the droplet surface temperature obtained from the quasi-stationary problem, approximation formulas for these parameters are developed in this paper. As an example, the problems of evaporation of a liquid oxygen droplet in an atmosphere of gaseous hydrogen and a droplet of liquid n-decane in an atmosphere of gaseous oxygen are considered. Formulas for calculation of mass flow and heat flux from liquid phase to gas based on the solution of the droplet evaporation problem are presented. Estimates of droplets lifetime in engine are provided based on developed droplet evaporation models.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009457652400537X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009457652400537X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

空间飞行任务安全的关键问题首先是在不同发射阶段和轨道修正阶段使用的不同类型火箭发动机的安全性、可靠性和有效性。如今,改进传统类型化学火箭发动机的可能性几乎已经耗尽,仅限于在能量-质量特性方面稍作改进。只有开发和使用新型发动机,才能实现发动机制造发展的质的飞跃。由于燃烧室中未燃烧的燃料会损失发动机的推力,因此研究液滴的燃烧和蒸发,特别是液滴的寿命,对于创建使用雾化液体燃料的燃烧室具有根本性的重要意义。由于在数值计算过程中,从液相到气体的质量流量和从液滴到气体的热流量是根据从准稳态问题中获得的佩克莱特数和液滴表面温度计算的,因此本文为这些参数建立了近似公式。例如,考虑了液态氧液滴在气态氢大气中的蒸发问题和液态正癸烷液滴在气态氧大气中的蒸发问题。根据液滴蒸发问题的解决方案,提出了从液相到气相的质量流量和热流量计算公式。根据开发的液滴蒸发模型,估算了液滴在发动机中的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical modeling of nonequilibrium combustion processes in a liquid rocket engine
The key problems of safety for Space missions begin with safety, reliability and effectiveness of rocket engines of different types used at different launch stages and orbit corrections. Today, the possibilities for improving chemical rocket engines of traditional types are almost completely exhausted and are limited to minor improvements in energy-mass characteristics. A qualitative leap in the development of engine building can only be achieved through the development and implementation of new types of engines. As unburned fuel in the combustion chamber is a loss of thrust for the engine, the study of droplet combustion and evaporation, in particular, the droplet lifetime, is of fundamental importance in the creation of combustion chambers using atomized liquid fuel in their operation.
In this paper a quasi-stationary model, which describes the evaporation of a single droplet in a gaseous atmosphere, is presented. Since in the numerical implementation the mass flow from the liquid phase to the gas and the heat flux from the droplet to the gas are calculated based on the Peclet number and the droplet surface temperature obtained from the quasi-stationary problem, approximation formulas for these parameters are developed in this paper. As an example, the problems of evaporation of a liquid oxygen droplet in an atmosphere of gaseous hydrogen and a droplet of liquid n-decane in an atmosphere of gaseous oxygen are considered. Formulas for calculation of mass flow and heat flux from liquid phase to gas based on the solution of the droplet evaporation problem are presented. Estimates of droplets lifetime in engine are provided based on developed droplet evaporation models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Astronautica
Acta Astronautica 工程技术-工程:宇航
CiteScore
7.20
自引率
22.90%
发文量
599
审稿时长
53 days
期刊介绍: Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to: The peaceful scientific exploration of space, Its exploitation for human welfare and progress, Conception, design, development and operation of space-borne and Earth-based systems, In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信