Hui Guo , Shengtao Han , Xin Jin , Yiwei Wu , Qufei Song , Yao Xiao , Hanyang Gu
{"title":"通过耦合中子学和遗传算法计算金属燃料钠快堆轴向异质堆芯设计中钠空隙值和孕育比的帕累托前沿","authors":"Hui Guo , Shengtao Han , Xin Jin , Yiwei Wu , Qufei Song , Yao Xiao , Hanyang Gu","doi":"10.1016/j.nucengdes.2024.113598","DOIUrl":null,"url":null,"abstract":"<div><div>For sodium-cooled fast reactors (SFRs), achieving low sodium void worth (SVW) and flexible breeding ratios (BR) is crucial. This study establishes a method coupling neutronics simulations with genetic algorithms (GA) and applies it to a 3000 MWth metal-fueled SFR to optimize the SVW, BR, and the power distribution of axially heterogeneous cores. The Pareto front, i.e. optimal front, between SVW and BR is determined, quantitatively clarifying the trade-off relationship between these two parameters. Axially heterogeneous cores with equal inner and outer fissile heights can achieve SVW adjustments from −71 to 3148 pcm and BR adjustments from 1.26 to 1.62. Designs with unequal fissile heights slightly expand the feasible region, but the impact on the optimal front for equal-height designs is limited. Through the analysis of the spatial distribution of the sodium void effect, it is shown that the bond sodium model significantly influences the SVW in low sodium void cores, while its impact on high breeding cores is minimal. The results indicate that the power distribution can be optimized by adjusting the enrichment of subregions within the constraints of SVW and BR. For low sodium void cores, retaining a certain amount of lower fertile material is necessary to flatten the power distribution. While the criticality search during depletion calculations affects the parameters, its impact on identifying the optimal front is limited.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"429 ","pages":"Article 113598"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pareto front of sodium void worth and breeding ratio in metal-fueled sodium fast reactor with axially heterogeneous core design by coupling neutronics and genetic algorithm\",\"authors\":\"Hui Guo , Shengtao Han , Xin Jin , Yiwei Wu , Qufei Song , Yao Xiao , Hanyang Gu\",\"doi\":\"10.1016/j.nucengdes.2024.113598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For sodium-cooled fast reactors (SFRs), achieving low sodium void worth (SVW) and flexible breeding ratios (BR) is crucial. This study establishes a method coupling neutronics simulations with genetic algorithms (GA) and applies it to a 3000 MWth metal-fueled SFR to optimize the SVW, BR, and the power distribution of axially heterogeneous cores. The Pareto front, i.e. optimal front, between SVW and BR is determined, quantitatively clarifying the trade-off relationship between these two parameters. Axially heterogeneous cores with equal inner and outer fissile heights can achieve SVW adjustments from −71 to 3148 pcm and BR adjustments from 1.26 to 1.62. Designs with unequal fissile heights slightly expand the feasible region, but the impact on the optimal front for equal-height designs is limited. Through the analysis of the spatial distribution of the sodium void effect, it is shown that the bond sodium model significantly influences the SVW in low sodium void cores, while its impact on high breeding cores is minimal. The results indicate that the power distribution can be optimized by adjusting the enrichment of subregions within the constraints of SVW and BR. For low sodium void cores, retaining a certain amount of lower fertile material is necessary to flatten the power distribution. While the criticality search during depletion calculations affects the parameters, its impact on identifying the optimal front is limited.</div></div>\",\"PeriodicalId\":19170,\"journal\":{\"name\":\"Nuclear Engineering and Design\",\"volume\":\"429 \",\"pages\":\"Article 113598\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029549324006988\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324006988","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Pareto front of sodium void worth and breeding ratio in metal-fueled sodium fast reactor with axially heterogeneous core design by coupling neutronics and genetic algorithm
For sodium-cooled fast reactors (SFRs), achieving low sodium void worth (SVW) and flexible breeding ratios (BR) is crucial. This study establishes a method coupling neutronics simulations with genetic algorithms (GA) and applies it to a 3000 MWth metal-fueled SFR to optimize the SVW, BR, and the power distribution of axially heterogeneous cores. The Pareto front, i.e. optimal front, between SVW and BR is determined, quantitatively clarifying the trade-off relationship between these two parameters. Axially heterogeneous cores with equal inner and outer fissile heights can achieve SVW adjustments from −71 to 3148 pcm and BR adjustments from 1.26 to 1.62. Designs with unequal fissile heights slightly expand the feasible region, but the impact on the optimal front for equal-height designs is limited. Through the analysis of the spatial distribution of the sodium void effect, it is shown that the bond sodium model significantly influences the SVW in low sodium void cores, while its impact on high breeding cores is minimal. The results indicate that the power distribution can be optimized by adjusting the enrichment of subregions within the constraints of SVW and BR. For low sodium void cores, retaining a certain amount of lower fertile material is necessary to flatten the power distribution. While the criticality search during depletion calculations affects the parameters, its impact on identifying the optimal front is limited.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.