{"title":"将 MELCOR 与用于锥形碎片床淬火估算的代用模型相耦合","authors":"Wanhong Wang, Weimin Ma","doi":"10.1016/j.anucene.2024.110933","DOIUrl":null,"url":null,"abstract":"<div><div>The MELCOR code as a severe accident simulation tool does not have the capability to capture the quench process of a debris bed which may form in the wet cavity during a severe accident of light water reactors (LWRs). Although the coupled MELCOR/COCOMO simulation could overcome the limitation (Chen et al., 2022), the calculation time was explosively escalated due to mechanistic modeling of debris bed thermal-hydraulics in COCOMO. To suppress the computational cost, a surrogate model (SM) was developed in our previous study (Wang et al., 2023), and its coupling with MELCOR could realize a quick estimation of the quench process of one-dimensional debris beds. The present study is an extension of the previous work, aiming at the development of a new surrogate model for the quench process of two-dimensional conical debris beds. The new surrogate model (SM) was based on artificial neural networks (ANNs) and trained by the database from COCOMO calculations of various conical debris beds quenched in the reactor cavity of a Nordic boiling water reactor (BWR). The MELCOR was then coupled with the new SM to simulate a postulated station blackout (SBO) scenario in the BWR. The results show that the coupled MELCOR/SM simulation could provide similar ex-vessel debris bed quench period and containment pressure/temperature trends as the coupled MELCOR/COCOMO. Compared with the MELCOR standalone calculation, the coupled calculations predicted earlier points of time for water pool saturation and containment venting, since the heat transfer from conical debris bed to water pool is faster in the coupled simulations.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306454924005966/pdfft?md5=30a8d621b7bdd294c65c323d9f6699a8&pid=1-s2.0-S0306454924005966-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Coupling of MELCOR with surrogate model for quench estimation of conical debris beds\",\"authors\":\"Wanhong Wang, Weimin Ma\",\"doi\":\"10.1016/j.anucene.2024.110933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The MELCOR code as a severe accident simulation tool does not have the capability to capture the quench process of a debris bed which may form in the wet cavity during a severe accident of light water reactors (LWRs). Although the coupled MELCOR/COCOMO simulation could overcome the limitation (Chen et al., 2022), the calculation time was explosively escalated due to mechanistic modeling of debris bed thermal-hydraulics in COCOMO. To suppress the computational cost, a surrogate model (SM) was developed in our previous study (Wang et al., 2023), and its coupling with MELCOR could realize a quick estimation of the quench process of one-dimensional debris beds. The present study is an extension of the previous work, aiming at the development of a new surrogate model for the quench process of two-dimensional conical debris beds. The new surrogate model (SM) was based on artificial neural networks (ANNs) and trained by the database from COCOMO calculations of various conical debris beds quenched in the reactor cavity of a Nordic boiling water reactor (BWR). The MELCOR was then coupled with the new SM to simulate a postulated station blackout (SBO) scenario in the BWR. The results show that the coupled MELCOR/SM simulation could provide similar ex-vessel debris bed quench period and containment pressure/temperature trends as the coupled MELCOR/COCOMO. Compared with the MELCOR standalone calculation, the coupled calculations predicted earlier points of time for water pool saturation and containment venting, since the heat transfer from conical debris bed to water pool is faster in the coupled simulations.</div></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0306454924005966/pdfft?md5=30a8d621b7bdd294c65c323d9f6699a8&pid=1-s2.0-S0306454924005966-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454924005966\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924005966","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Coupling of MELCOR with surrogate model for quench estimation of conical debris beds
The MELCOR code as a severe accident simulation tool does not have the capability to capture the quench process of a debris bed which may form in the wet cavity during a severe accident of light water reactors (LWRs). Although the coupled MELCOR/COCOMO simulation could overcome the limitation (Chen et al., 2022), the calculation time was explosively escalated due to mechanistic modeling of debris bed thermal-hydraulics in COCOMO. To suppress the computational cost, a surrogate model (SM) was developed in our previous study (Wang et al., 2023), and its coupling with MELCOR could realize a quick estimation of the quench process of one-dimensional debris beds. The present study is an extension of the previous work, aiming at the development of a new surrogate model for the quench process of two-dimensional conical debris beds. The new surrogate model (SM) was based on artificial neural networks (ANNs) and trained by the database from COCOMO calculations of various conical debris beds quenched in the reactor cavity of a Nordic boiling water reactor (BWR). The MELCOR was then coupled with the new SM to simulate a postulated station blackout (SBO) scenario in the BWR. The results show that the coupled MELCOR/SM simulation could provide similar ex-vessel debris bed quench period and containment pressure/temperature trends as the coupled MELCOR/COCOMO. Compared with the MELCOR standalone calculation, the coupled calculations predicted earlier points of time for water pool saturation and containment venting, since the heat transfer from conical debris bed to water pool is faster in the coupled simulations.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.