拉格朗日NQ子曼形体的变形

IF 1.5 1区 数学 Q1 MATHEMATICS
Miquel Cueca , Jonas Schnitzer
{"title":"拉格朗日NQ子曼形体的变形","authors":"Miquel Cueca ,&nbsp;Jonas Schnitzer","doi":"10.1016/j.aim.2024.109952","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we prove graded versions of the Darboux Theorem and Weinstein's Lagrangian tubular neighbourhood Theorem in order to study the deformation theory of Lagrangian <em>NQ</em>-submanifolds of degree <em>n</em> symplectic <em>NQ</em>-manifolds. Using Weinstein's Lagrangian tubular neighbourhood Theorem, we attach to every Lagrangian <em>NQ</em>-submanifold an <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-algebra, which controls its deformation theory. The main examples are coisotropic submanifolds of Poisson manifolds and (higher) Dirac structures with support in (higher) Courant algebroids.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109952"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824004675/pdfft?md5=5940eacdc2d09ddd157ad0d959322302&pid=1-s2.0-S0001870824004675-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deformations of Lagrangian NQ-submanifolds\",\"authors\":\"Miquel Cueca ,&nbsp;Jonas Schnitzer\",\"doi\":\"10.1016/j.aim.2024.109952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we prove graded versions of the Darboux Theorem and Weinstein's Lagrangian tubular neighbourhood Theorem in order to study the deformation theory of Lagrangian <em>NQ</em>-submanifolds of degree <em>n</em> symplectic <em>NQ</em>-manifolds. Using Weinstein's Lagrangian tubular neighbourhood Theorem, we attach to every Lagrangian <em>NQ</em>-submanifold an <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-algebra, which controls its deformation theory. The main examples are coisotropic submanifolds of Poisson manifolds and (higher) Dirac structures with support in (higher) Courant algebroids.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109952\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004675/pdfft?md5=5940eacdc2d09ddd157ad0d959322302&pid=1-s2.0-S0001870824004675-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004675\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004675","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了达布定理和温斯坦拉格朗日管状邻域定理的分级版本,以研究 n 度交映 NQ-manifolds的拉格朗日 NQ-submanifolds的变形理论。利用韦恩斯坦拉格朗日管状邻域定理,我们给每个拉格朗日 NQ 子曼形体附加了一个 L∞ 代数,这个代数控制着它的变形理论。主要的例子是泊松流形的各向同性子流形,以及在(高)库朗特实体中具有支持的(高)狄拉克结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformations of Lagrangian NQ-submanifolds
In this paper we prove graded versions of the Darboux Theorem and Weinstein's Lagrangian tubular neighbourhood Theorem in order to study the deformation theory of Lagrangian NQ-submanifolds of degree n symplectic NQ-manifolds. Using Weinstein's Lagrangian tubular neighbourhood Theorem, we attach to every Lagrangian NQ-submanifold an L-algebra, which controls its deformation theory. The main examples are coisotropic submanifolds of Poisson manifolds and (higher) Dirac structures with support in (higher) Courant algebroids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信