{"title":"拉格朗日NQ子曼形体的变形","authors":"Miquel Cueca , Jonas Schnitzer","doi":"10.1016/j.aim.2024.109952","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we prove graded versions of the Darboux Theorem and Weinstein's Lagrangian tubular neighbourhood Theorem in order to study the deformation theory of Lagrangian <em>NQ</em>-submanifolds of degree <em>n</em> symplectic <em>NQ</em>-manifolds. Using Weinstein's Lagrangian tubular neighbourhood Theorem, we attach to every Lagrangian <em>NQ</em>-submanifold an <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-algebra, which controls its deformation theory. The main examples are coisotropic submanifolds of Poisson manifolds and (higher) Dirac structures with support in (higher) Courant algebroids.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109952"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824004675/pdfft?md5=5940eacdc2d09ddd157ad0d959322302&pid=1-s2.0-S0001870824004675-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deformations of Lagrangian NQ-submanifolds\",\"authors\":\"Miquel Cueca , Jonas Schnitzer\",\"doi\":\"10.1016/j.aim.2024.109952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we prove graded versions of the Darboux Theorem and Weinstein's Lagrangian tubular neighbourhood Theorem in order to study the deformation theory of Lagrangian <em>NQ</em>-submanifolds of degree <em>n</em> symplectic <em>NQ</em>-manifolds. Using Weinstein's Lagrangian tubular neighbourhood Theorem, we attach to every Lagrangian <em>NQ</em>-submanifold an <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-algebra, which controls its deformation theory. The main examples are coisotropic submanifolds of Poisson manifolds and (higher) Dirac structures with support in (higher) Courant algebroids.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109952\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004675/pdfft?md5=5940eacdc2d09ddd157ad0d959322302&pid=1-s2.0-S0001870824004675-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004675\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004675","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们证明了达布定理和温斯坦拉格朗日管状邻域定理的分级版本,以研究 n 度交映 NQ-manifolds的拉格朗日 NQ-submanifolds的变形理论。利用韦恩斯坦拉格朗日管状邻域定理,我们给每个拉格朗日 NQ 子曼形体附加了一个 L∞ 代数,这个代数控制着它的变形理论。主要的例子是泊松流形的各向同性子流形,以及在(高)库朗特实体中具有支持的(高)狄拉克结构。
In this paper we prove graded versions of the Darboux Theorem and Weinstein's Lagrangian tubular neighbourhood Theorem in order to study the deformation theory of Lagrangian NQ-submanifolds of degree n symplectic NQ-manifolds. Using Weinstein's Lagrangian tubular neighbourhood Theorem, we attach to every Lagrangian NQ-submanifold an -algebra, which controls its deformation theory. The main examples are coisotropic submanifolds of Poisson manifolds and (higher) Dirac structures with support in (higher) Courant algebroids.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.