{"title":"基于多维变换张量的动态磁共振成像平滑稳健主成分分析","authors":"Xiaotong Liu, Jingfei He, Zehan Wang, Chenghu Mi","doi":"10.1016/j.sigpro.2024.109712","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic magnetic resonance imaging (DMRI) stands as a sophisticated medical imaging technique pivotal to clinical practice, but the protracted duration of its imaging poses a substantial constraint on its practical application. This paper introduces a smooth robust principal component analysis model based on multidimensional transform tensors for accelerating DMR imaging. Specifically, the proposed method breaks down data into low-rank and sparse parts for reconstruction, respectively. The low-rank part employs a multidimensional adaptive transformation framework to generate transform tensors with favorable low-rank properties along three dimensions of DMR data. As for the sparse part, precise reconstruction can be achieved with the sparsity of the data after sparse transformation. In addition, to enhance the preservation of image details, this paper introduces a novel weighted tensor total variation regularization, imposing varying degrees of constraints based on smoothness in different dimensions. Experimental results demonstrate that the proposed method realizes superior reconstruction effects in comparison to existing advanced methods.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109712"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth robust principal component analysis based on multidimensional transform tensor for dynamic MRI\",\"authors\":\"Xiaotong Liu, Jingfei He, Zehan Wang, Chenghu Mi\",\"doi\":\"10.1016/j.sigpro.2024.109712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dynamic magnetic resonance imaging (DMRI) stands as a sophisticated medical imaging technique pivotal to clinical practice, but the protracted duration of its imaging poses a substantial constraint on its practical application. This paper introduces a smooth robust principal component analysis model based on multidimensional transform tensors for accelerating DMR imaging. Specifically, the proposed method breaks down data into low-rank and sparse parts for reconstruction, respectively. The low-rank part employs a multidimensional adaptive transformation framework to generate transform tensors with favorable low-rank properties along three dimensions of DMR data. As for the sparse part, precise reconstruction can be achieved with the sparsity of the data after sparse transformation. In addition, to enhance the preservation of image details, this paper introduces a novel weighted tensor total variation regularization, imposing varying degrees of constraints based on smoothness in different dimensions. Experimental results demonstrate that the proposed method realizes superior reconstruction effects in comparison to existing advanced methods.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"227 \",\"pages\":\"Article 109712\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424003323\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003323","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Smooth robust principal component analysis based on multidimensional transform tensor for dynamic MRI
Dynamic magnetic resonance imaging (DMRI) stands as a sophisticated medical imaging technique pivotal to clinical practice, but the protracted duration of its imaging poses a substantial constraint on its practical application. This paper introduces a smooth robust principal component analysis model based on multidimensional transform tensors for accelerating DMR imaging. Specifically, the proposed method breaks down data into low-rank and sparse parts for reconstruction, respectively. The low-rank part employs a multidimensional adaptive transformation framework to generate transform tensors with favorable low-rank properties along three dimensions of DMR data. As for the sparse part, precise reconstruction can be achieved with the sparsity of the data after sparse transformation. In addition, to enhance the preservation of image details, this paper introduces a novel weighted tensor total variation regularization, imposing varying degrees of constraints based on smoothness in different dimensions. Experimental results demonstrate that the proposed method realizes superior reconstruction effects in comparison to existing advanced methods.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.