{"title":"有效核电荷的新定义及其在估算矩阵元素⟨n,l|rβ|n′,l′⟩中的应用","authors":"Xiangdong Li , Frank B. Rosmej , Zhanbin Chen","doi":"10.1016/j.physo.2024.100241","DOIUrl":null,"url":null,"abstract":"<div><div>New definitions of the effective nuclear charge are proposed to evaluate the orbital wave function and the dipole matrix element <span><math><mrow><mo>⟨</mo><mrow><mi>n</mi><mo>,</mo><mi>l</mi><mrow><mo>|</mo><mi>r</mi><mo>|</mo></mrow><msup><mi>n</mi><mo>′</mo></msup><mo>,</mo><msup><mi>l</mi><mo>′</mo></msup></mrow><mo>⟩</mo></mrow></math></span> for the non-hydrogenic atoms or ions. It is found that the commonly used effective nuclear charge defined by the orbital energy is insufficiently precise to estimate the orbital wave functions and matrix elements <span><math><mrow><mo>⟨</mo><mrow><mi>n</mi><mo>,</mo><mi>l</mi><mrow><mo>|</mo><mi>r</mi><mo>|</mo></mrow><msup><mi>n</mi><mo>′</mo></msup><mo>,</mo><msup><mi>l</mi><mo>′</mo></msup></mrow><mo>⟩</mo></mrow></math></span>. Instead, the effective nuclear charge defined by <span><math><mrow><mo>⟨</mo><mi>r</mi><mo>⟩</mo></mrow></math></span> or <span><math><mrow><mo>⟨</mo><msup><mi>r</mi><mn>2</mn></msup><mo>⟩</mo></mrow></math></span> are more advantageous. It is shown that the effective nuclear charge method becomes increasingly precise to predict wave functions and matrix elements as the orbital angular momentum, the principle quantum number and the degree of ionization increase. Good accuracy is achieved when principal quantum numbers are identical <span><math><mrow><mi>n</mi><mo>=</mo><msup><mi>n</mi><mo>′</mo></msup></mrow></math></span> or when both orbital quantum numbers <span><math><mrow><mi>l</mi></mrow></math></span> and <span><math><mrow><msup><mi>l</mi><mo>′</mo></msup></mrow></math></span> are non-zero. When <span><math><mrow><mi>s</mi></mrow></math></span>-orbitals are involved (<span><math><mrow><mi>l</mi></mrow></math></span> or <span><math><mrow><msup><mi>l</mi><mo>′</mo></msup></mrow></math></span> equal to zero) the precision is decreasing.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"21 ","pages":"Article 100241"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666032624000395/pdfft?md5=5cc6bcc9ef1647e9c549e6310589ab96&pid=1-s2.0-S2666032624000395-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New definitions of the effective nuclear charge and its application to estimate the matrix element ⟨n,l|rβ|n′,l′⟩\",\"authors\":\"Xiangdong Li , Frank B. Rosmej , Zhanbin Chen\",\"doi\":\"10.1016/j.physo.2024.100241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>New definitions of the effective nuclear charge are proposed to evaluate the orbital wave function and the dipole matrix element <span><math><mrow><mo>⟨</mo><mrow><mi>n</mi><mo>,</mo><mi>l</mi><mrow><mo>|</mo><mi>r</mi><mo>|</mo></mrow><msup><mi>n</mi><mo>′</mo></msup><mo>,</mo><msup><mi>l</mi><mo>′</mo></msup></mrow><mo>⟩</mo></mrow></math></span> for the non-hydrogenic atoms or ions. It is found that the commonly used effective nuclear charge defined by the orbital energy is insufficiently precise to estimate the orbital wave functions and matrix elements <span><math><mrow><mo>⟨</mo><mrow><mi>n</mi><mo>,</mo><mi>l</mi><mrow><mo>|</mo><mi>r</mi><mo>|</mo></mrow><msup><mi>n</mi><mo>′</mo></msup><mo>,</mo><msup><mi>l</mi><mo>′</mo></msup></mrow><mo>⟩</mo></mrow></math></span>. Instead, the effective nuclear charge defined by <span><math><mrow><mo>⟨</mo><mi>r</mi><mo>⟩</mo></mrow></math></span> or <span><math><mrow><mo>⟨</mo><msup><mi>r</mi><mn>2</mn></msup><mo>⟩</mo></mrow></math></span> are more advantageous. It is shown that the effective nuclear charge method becomes increasingly precise to predict wave functions and matrix elements as the orbital angular momentum, the principle quantum number and the degree of ionization increase. Good accuracy is achieved when principal quantum numbers are identical <span><math><mrow><mi>n</mi><mo>=</mo><msup><mi>n</mi><mo>′</mo></msup></mrow></math></span> or when both orbital quantum numbers <span><math><mrow><mi>l</mi></mrow></math></span> and <span><math><mrow><msup><mi>l</mi><mo>′</mo></msup></mrow></math></span> are non-zero. When <span><math><mrow><mi>s</mi></mrow></math></span>-orbitals are involved (<span><math><mrow><mi>l</mi></mrow></math></span> or <span><math><mrow><msup><mi>l</mi><mo>′</mo></msup></mrow></math></span> equal to zero) the precision is decreasing.</div></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"21 \",\"pages\":\"Article 100241\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666032624000395/pdfft?md5=5cc6bcc9ef1647e9c549e6310589ab96&pid=1-s2.0-S2666032624000395-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666032624000395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032624000395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
摘要
提出了有效核电荷的新定义,以评估非氢原子或离子的轨道波函数和偶极矩阵元素⟨n,l|r|n′,l′⟩。研究发现,常用的由轨道能量定义的有效核电荷不足以精确估算轨道波函数和矩阵元素⟨n,l|r|n′,l′⟩。相反,由⟨r⟩或⟨r2⟩定义的有效核电荷更有优势。研究表明,随着轨道角动量、主量子数和电离程度的增加,有效核电荷法预测波函数和矩阵元素的精确度也越来越高。当主量子数相同 n=n′ 或轨道量子数 l 和 l′ 都不为零时,可以达到很高的精度。当涉及 s 轨道时(l 或 l′ 等于零),精确度会下降。
New definitions of the effective nuclear charge and its application to estimate the matrix element ⟨n,l|rβ|n′,l′⟩
New definitions of the effective nuclear charge are proposed to evaluate the orbital wave function and the dipole matrix element for the non-hydrogenic atoms or ions. It is found that the commonly used effective nuclear charge defined by the orbital energy is insufficiently precise to estimate the orbital wave functions and matrix elements . Instead, the effective nuclear charge defined by or are more advantageous. It is shown that the effective nuclear charge method becomes increasingly precise to predict wave functions and matrix elements as the orbital angular momentum, the principle quantum number and the degree of ionization increase. Good accuracy is achieved when principal quantum numbers are identical or when both orbital quantum numbers and are non-zero. When -orbitals are involved ( or equal to zero) the precision is decreasing.