论适应系统识别的情境学习者

Q3 Engineering
Dario Piga, Filippo Pura, Marco Forgione
{"title":"论适应系统识别的情境学习者","authors":"Dario Piga,&nbsp;Filippo Pura,&nbsp;Marco Forgione","doi":"10.1016/j.ifacol.2024.08.541","DOIUrl":null,"url":null,"abstract":"<div><div>In-context system identification aims at constructing meta-models to describe classes of systems, differently from traditional approaches that model single systems. This paradigm facilitates the leveraging of knowledge acquired from observing the behaviour of different, yet related dynamics. This paper discusses the role of meta-model adaptation. Through numerical examples, we demonstrate how meta-model adaptation can enhance predictive performance in three realistic scenarios: tailoring the meta-model to describe a specific system rather than a class; extending the meta-model to capture the behaviour of systems beyond the initial training class; and recalibrating the model for new prediction tasks. Results highlight the effectiveness of meta-model adaptation to achieve a more robust and versatile meta-learning framework for system identification.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"58 15","pages":"Pages 277-282"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405896324013211/pdf?md5=f87b411139a6c82f83469568d6dc4a76&pid=1-s2.0-S2405896324013211-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the adaptation of in-context learners for system identification\",\"authors\":\"Dario Piga,&nbsp;Filippo Pura,&nbsp;Marco Forgione\",\"doi\":\"10.1016/j.ifacol.2024.08.541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In-context system identification aims at constructing meta-models to describe classes of systems, differently from traditional approaches that model single systems. This paradigm facilitates the leveraging of knowledge acquired from observing the behaviour of different, yet related dynamics. This paper discusses the role of meta-model adaptation. Through numerical examples, we demonstrate how meta-model adaptation can enhance predictive performance in three realistic scenarios: tailoring the meta-model to describe a specific system rather than a class; extending the meta-model to capture the behaviour of systems beyond the initial training class; and recalibrating the model for new prediction tasks. Results highlight the effectiveness of meta-model adaptation to achieve a more robust and versatile meta-learning framework for system identification.</div></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"58 15\",\"pages\":\"Pages 277-282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405896324013211/pdf?md5=f87b411139a6c82f83469568d6dc4a76&pid=1-s2.0-S2405896324013211-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896324013211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896324013211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

上下文系统识别旨在构建元模型来描述系统类别,有别于为单一系统建模的传统方法。这种模式有助于利用从观察不同但相关的动态行为中获得的知识。本文讨论了元模型适应性的作用。通过数字示例,我们展示了元模型适应如何在三种现实场景中提高预测性能:定制元模型以描述特定系统而非类别;扩展元模型以捕捉初始训练类别之外的系统行为;以及针对新的预测任务重新校准模型。研究结果凸显了元模型适应性的有效性,从而为系统识别提供了一个更稳健、用途更广泛的元学习框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the adaptation of in-context learners for system identification
In-context system identification aims at constructing meta-models to describe classes of systems, differently from traditional approaches that model single systems. This paradigm facilitates the leveraging of knowledge acquired from observing the behaviour of different, yet related dynamics. This paper discusses the role of meta-model adaptation. Through numerical examples, we demonstrate how meta-model adaptation can enhance predictive performance in three realistic scenarios: tailoring the meta-model to describe a specific system rather than a class; extending the meta-model to capture the behaviour of systems beyond the initial training class; and recalibrating the model for new prediction tasks. Results highlight the effectiveness of meta-model adaptation to achieve a more robust and versatile meta-learning framework for system identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC-PapersOnLine
IFAC-PapersOnLine Engineering-Control and Systems Engineering
CiteScore
1.70
自引率
0.00%
发文量
1122
期刊介绍: All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信