从量化的相位和振幅响应确定铁电中的压印效应

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Subhajit Pal, Emanuele Palladino, Haozhen Yuan, Muireann Anna de h-Óra, Judith L. MacManus-Driscoll, Jorge Ontaneda, Vivek Dwij, Vasant G. Sathe and Joe Briscoe*, 
{"title":"从量化的相位和振幅响应确定铁电中的压印效应","authors":"Subhajit Pal,&nbsp;Emanuele Palladino,&nbsp;Haozhen Yuan,&nbsp;Muireann Anna de h-Óra,&nbsp;Judith L. MacManus-Driscoll,&nbsp;Jorge Ontaneda,&nbsp;Vivek Dwij,&nbsp;Vasant G. Sathe and Joe Briscoe*,&nbsp;","doi":"10.1021/acsaelm.4c0087510.1021/acsaelm.4c00875","DOIUrl":null,"url":null,"abstract":"<p >Piezoresponse force microscopy (PFM) is a robust characterization technique to explore ferroelectric properties at the nanoscale. However, the PFM signal can lead to misinterpretation of results due to the dominant electrostatic interaction between the tip and the sample. In this work, a detailed calibration process is presented and a procedure to identify the parasitic phase offset is demonstrated. To obtain artifact-free phase–amplitude loops, a methodology is developed by combining the outcomes from switching spectroscopy-PFM (SS-PFM) and Kelvin probe force microscopy (KPFM). It is demonstrated that the phase and amplitude loops obtained from SS-PFM at a specific read voltage, ascertained from the surface potential by KPFM, can convey accurate electromechanical information. These methodologies are applied to quantify the imprint voltage in BaTiO<sub>3</sub> and BiFeO<sub>3</sub>, along with vertically aligned BaTiO<sub>3</sub>:Sm<sub>2</sub>O<sub>3</sub> and BaTiO<sub>3</sub>:MgO nanocomposites. The variation of the imprint voltage measured under different tip voltages demonstrates the importance of selecting the correct read voltage in determining the local imprint voltage. Additionally, 2D imprint voltage maps in each domain of a BaTiO<sub>3</sub> single crystal are obtained using the datacube-PFM technique, which allows pixel-by-pixel determination of artifact-free spatial variation of PFM phase–amplitude response.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaelm.4c00875","citationCount":"0","resultStr":"{\"title\":\"Determination of Imprint Effects in Ferroelectrics from the Quantified Phase and Amplitude Response\",\"authors\":\"Subhajit Pal,&nbsp;Emanuele Palladino,&nbsp;Haozhen Yuan,&nbsp;Muireann Anna de h-Óra,&nbsp;Judith L. MacManus-Driscoll,&nbsp;Jorge Ontaneda,&nbsp;Vivek Dwij,&nbsp;Vasant G. Sathe and Joe Briscoe*,&nbsp;\",\"doi\":\"10.1021/acsaelm.4c0087510.1021/acsaelm.4c00875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Piezoresponse force microscopy (PFM) is a robust characterization technique to explore ferroelectric properties at the nanoscale. However, the PFM signal can lead to misinterpretation of results due to the dominant electrostatic interaction between the tip and the sample. In this work, a detailed calibration process is presented and a procedure to identify the parasitic phase offset is demonstrated. To obtain artifact-free phase–amplitude loops, a methodology is developed by combining the outcomes from switching spectroscopy-PFM (SS-PFM) and Kelvin probe force microscopy (KPFM). It is demonstrated that the phase and amplitude loops obtained from SS-PFM at a specific read voltage, ascertained from the surface potential by KPFM, can convey accurate electromechanical information. These methodologies are applied to quantify the imprint voltage in BaTiO<sub>3</sub> and BiFeO<sub>3</sub>, along with vertically aligned BaTiO<sub>3</sub>:Sm<sub>2</sub>O<sub>3</sub> and BaTiO<sub>3</sub>:MgO nanocomposites. The variation of the imprint voltage measured under different tip voltages demonstrates the importance of selecting the correct read voltage in determining the local imprint voltage. Additionally, 2D imprint voltage maps in each domain of a BaTiO<sub>3</sub> single crystal are obtained using the datacube-PFM technique, which allows pixel-by-pixel determination of artifact-free spatial variation of PFM phase–amplitude response.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsaelm.4c00875\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.4c00875\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c00875","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

压电响应力显微镜(PFM)是一种强大的表征技术,可用于探索纳米尺度的铁电特性。然而,由于针尖与样品之间的静电相互作用占主导地位,压电显微镜信号可能导致对结果的误读。本文介绍了详细的校准过程,并演示了识别寄生相位偏移的程序。为了获得无伪影的相位-振幅环,结合开关光谱-PFM(SS-PFM)和开尔文探针力显微镜(KPFM)的结果,开发了一种方法。结果表明,在特定读取电压下通过 SS-PFM 获得的相位和振幅环路(通过 KPFM 确定表面电位)可以传递准确的机电信息。这些方法被用于量化 BaTiO3 和 BiFeO3 以及垂直排列的 BaTiO3:Sm2O3 和 BaTiO3:MgO 纳米复合材料中的压印电压。在不同针尖电压下测得的压印电压的变化表明,选择正确的读取电压对确定局部压印电压非常重要。此外,还利用数据管-PFM 技术获得了 BaTiO3 单晶体每个畴的二维压印电压图,该技术允许逐像素测定 PFM 相幅响应的无伪影空间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of Imprint Effects in Ferroelectrics from the Quantified Phase and Amplitude Response

Piezoresponse force microscopy (PFM) is a robust characterization technique to explore ferroelectric properties at the nanoscale. However, the PFM signal can lead to misinterpretation of results due to the dominant electrostatic interaction between the tip and the sample. In this work, a detailed calibration process is presented and a procedure to identify the parasitic phase offset is demonstrated. To obtain artifact-free phase–amplitude loops, a methodology is developed by combining the outcomes from switching spectroscopy-PFM (SS-PFM) and Kelvin probe force microscopy (KPFM). It is demonstrated that the phase and amplitude loops obtained from SS-PFM at a specific read voltage, ascertained from the surface potential by KPFM, can convey accurate electromechanical information. These methodologies are applied to quantify the imprint voltage in BaTiO3 and BiFeO3, along with vertically aligned BaTiO3:Sm2O3 and BaTiO3:MgO nanocomposites. The variation of the imprint voltage measured under different tip voltages demonstrates the importance of selecting the correct read voltage in determining the local imprint voltage. Additionally, 2D imprint voltage maps in each domain of a BaTiO3 single crystal are obtained using the datacube-PFM technique, which allows pixel-by-pixel determination of artifact-free spatial variation of PFM phase–amplitude response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信